一个通用的pytorch使用预训练模型训练本地数据代码--resnet101为例

本文介绍了如何利用PyTorch结合预训练的ResNet101模型,对本地数据进行深度学习训练。代码中包含详细注释,适用于PyTorch1.6及以上版本,对于更低版本需关注除法计算差异。
摘要由CSDN通过智能技术生成

因为代码里面有比较详细的注记,这里就不啰嗦了。注意,如果是pytorch1.6以下版本,在计算除法时会有不同,具体查看该版本下除法计算的文档。直接上干货了。

from torch import  nn
from torchvision import models,datasets,transforms
import torch as tc
from  torch.autograd import Variable
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
batch_size = 8
learning_rate = 0.0002
epoc = 10

train_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])
val_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.ToTensor(),
    transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = 'E:/pydata/cats_and_dogs_small/train'
train_datasets = datasets.ImageFolder(train_dir,transform=train_transforms)
train_dataloader = DataLoader(train_datasets,batch_size=batch_size,shuffle=True)

val_dir 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值