使用两种保存模型的模块pickle
与joblib进行模型保存。
from sklearn import svm
from sklearn import datasets
#首先简单建立与训练一个SVCModel
clf = svm.SVC()
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf.fit(X,y)
#1、使用pickle来保存与读取训练好的Model
import pickle #pickle模块
#保存Model(save文件夹要预先建立)
with open('save/clf.pickle', 'wb') as f: #write byte
pickle.dump(clf, f)
#读取Model
with open('save/clf.pickle', 'rb') as f: #read byte
clf2 = pickle.load(f)
#测试读取后的Model
print(clf2.predict(X[0:1]))
# 结果应该是[0]
#2、使用 joblib 保存(好一点)
import joblib #jbolib模块
#保存Model
joblib.dump(clf, 'save/clf.pkl')
#读取Model
clf3 = joblib.load('save/clf.pkl')
#测试读取后的Model
print(clf3.predict(X[0:1]))