sklearn模型保存

该文演示了如何使用pickle和joblib模块在Python中保存与加载scikit-learn的SVC模型。通过加载iris数据集训练模型,然后使用pickle和joblib分别进行保存和读取,最后验证读取的模型能正确进行预测。
摘要由CSDN通过智能技术生成

使用两种保存模型的模块picklejoblib进行模型保存。

from sklearn import svm
from sklearn import datasets
#首先简单建立与训练一个SVCModel
clf = svm.SVC()
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf.fit(X,y)

#1、使用pickle来保存与读取训练好的Model
import pickle #pickle模块
#保存Model(save文件夹要预先建立)
with open('save/clf.pickle', 'wb') as f:  #write byte
    pickle.dump(clf, f)
#读取Model
with open('save/clf.pickle', 'rb') as f:  #read byte
    clf2 = pickle.load(f)
    #测试读取后的Model
    print(clf2.predict(X[0:1]))
# 结果应该是[0]

#2、使用 joblib 保存(好一点)
import joblib #jbolib模块
#保存Model
joblib.dump(clf, 'save/clf.pkl')
#读取Model
clf3 = joblib.load('save/clf.pkl')
#测试读取后的Model
print(clf3.predict(X[0:1]))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值