为你的聊天机器人添加记忆功能:技术与实现

为你的聊天机器人添加记忆功能:技术与实现

在聊天机器人中,使用先前对话内容作为上下文的能力是其关键特性之一。本文将探讨几种实现这种状态管理的技术,包括:

  • 简单地将先前消息塞入聊天模型的提示中。
  • 修剪旧消息以减少模型处理的干扰信息。
  • 为长时间对话合成摘要等更复杂的修改。

我们将详细介绍几种技术。

引言

本文旨在帮助您为聊天机器人添加记忆功能,使其能够在对话中保持上下文。通过这样做,您的聊天机器人不仅能够得出更相关的回答,还能提高用户体验。

主要内容

设置

首先,我们需要安装一些必要的软件包,并将您的 OpenAI API 密钥设置为环境变量 OPENAI_API_KEY

%pip install --upgrade --quiet langchain langchain-openai

确保在代码中导入环境变量:

import dotenv

dotenv.load_dotenv()

设置之后,我们将创建一个聊天模型用于示例:

from langchain_openai import ChatOpenAI

chat = ChatOpenAI(model="gpt-3.5-turbo-0125")

消息传递

最简单的记忆形式是将聊天历史消息传递到链中。以下是一个例子:

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant. Answer all questions to the best of your ability."
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值