图的最短路径与距离学习

本文介绍了如何使用MATLAB计算有向图和无向图的最短路径。通过sparse矩阵构建图,利用graphallshortestpaths函数及Dijkstra算法寻找最短路径,并展示了具体计算过程和结果。
摘要由CSDN通过智能技术生成

目录

sparse构建稀疏矩阵

有向图最短路径

无向图最短路径


sparse构建稀疏矩阵

假设有这样一个无向图:

在这里插入图片描述

 代码如下:

%w(起点,终点)=权重值
clear all
clc
w=zeros(4);
w(1,2)=2;
w(1,3)=3;
w(1,4)=8;
w(2,3)=6;
w(2,4)=6;
g=sparse(w)

最终求解结果如下:

有向图最短路径

使用函数:graphallshortestpaths,其语法如下:

 

 参数含义:
G:稀疏矩阵
0/false代表无向图1/true代表有向图。默认为true。
首先我们需要创建一个有向图:

%w(起点,终点)=权重值
clear all
clc
w=zeros(4);
w(2,1)=20;
w(1,3)=31;
w(4,1)=85;
w(2,3)=64;
w(4,2)=67;
w(3,4)=54;
g=sparse(w);
view(biograph(g,[],'ShowWeights','on'))

得到结果如下:

 

 

 然后找出有向图中每对节点的最短路径,我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值