题解 NOIP2016 组合数问题

题目描述

组合数  $${C_{n}^{m}}$$ 表示的是从 n 个物品中选出 m 个物品的方案数。举个例子,从 (1,2,3)(1,2,3) 三个物品中选择两个物品可以有 (1,2),(1,3),(2,3)(1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 $${C_{n}^{m}}$$ 的一般公式:

$${C_{n}^{m}\ =\ \frac{n!}{m!(n-m)!}}$$

其中 $${n!=1*2*⋯*}$$ ;特别地,定义 0!=10!=1 。

小葱想知道如果给定 n,m 和 k ,对于所有的 $${0\leq i\leq n,0\leq j\leq \min \left ( i, m \right )0in,0jmin(i,m)}$$ 有多少对 (i,j)(i,j) 满足 $${C_{i}^{j}}$$ 是 k 的倍数。

输入输出格式

输入格式:

 

第一行有两个整数 t,kt,k ,其中 tt 代表该测试点总共有多少组测试数据, kk 的意义见问题描述。

接下来 tt 行每行两个整数 n,mn,m ,其中 n,mn,m 的意义见问题描述。

 

输出格式:

 

共 tt 行,每行一个整数代表所有的 0\leq i\leq n,0\leq j\leq \min \left ( i, m \right )0in,0jmin(i,m) 中有多少对 (i,j)(i,j) 满足 C_i^jCij 是 kk 的倍数。

 

输入输出样例

输入样例#1:  复制
1 2
3 3
输出样例#1:  复制
1
输入样例#2:  复制
2 5
4 5
6 7
输出样例#2:  复制
0
7

说明

【样例1说明】

在所有可能的情况中,只有 C_2^1 = 2C21=2 是2的倍数。

【子任务】

解题思路:

经过推导可以得$${C_n^m\ =\ C_{n-1}^{m-1}\ +\ C_{n-1}^{m}}$$

由此可以递推得出所有所需要的 $${C_{n}^{m}}$$

看到k一开始就给我们了,显然可以搞些事情,在预先处理组合数的时候就可以提前对k取模

然后就是查询有多少个组合数符合要求,那我们可以用前缀和优化一下

 

下面上代码:

 1//二维前缀和的边界需要注意
2#include<bits/stdc++.h>
3using namespace std;
4int C[2005][2005],k,T,n,m,sum[2005][2005],a[2005][2005];
5int main(){
6    scanf("%d%d",&T,&k);
7    C[1][1]=C[1][0]=1;
8    for (int i=1;i<=2001;i++) C[i][0]=1;//递推求解组合数
9    for (int i=2;i<=2001;i++)
10        for (int j=1;j<=i;j++){
11            C[i][j]=C[i-1][j-1]+C[i-1][j],C[i][j]%=k;
12        }
13    for (int i=1;i<=2001;i++)//前缀和优化
14        for (int j=1;j<=2001;j++){
15            if (C[i][j]==0&&j<=i)
16                sum[i][j]++;
17            sum[i][j]+=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
18        }
19    while (T--) {//处理询问
20        scanf("%d%d",&n,&m);
21        m=min(n,m);
22        printf("%d\n",sum[n][m]);
23    } 
24    return 0;
25

转载于:https://www.cnblogs.com/titititing/p/9526583.html

### NOIP2024 T1 题解编程竞赛解题思路 #### 背景介绍 NOIP(全国青少年信息学奥林匹克联赛)作为国内重要的计算机科学赛事之一,旨在选拔优秀的程序设计人才。每年的比赛都会设置不同难度级别的题目来测试参赛者的算法能力和编程技巧。 #### 解析策略制定 对于NOIP2024的第一道题目而言,通常这类题目会偏向基础概念的理解和简单应用,目的是让大部分选手能够入手并获得一定分数的同时也筛选出具备更深入思考能力的学生[^4]。 考虑到这一点,在面对T1这样的入门级挑战时,可以采取如下几种常见处理方式: - **直接求解**:如果问题本身相对直观,则可以直接通过观察数据特点找到规律进而得出结论。 - **暴力枚**:当不确定最优解决方案时,可以通过遍历所有可能情况的方法尝试解决问题,虽然效率较低但对于小规模的数据集仍然适用。 - **模拟过程**:针对一些涉及具体操作流程的问题,按照给定条件逐步模仿实际执行步骤直至达到目标状态。 假设本年度的首题围绕着珠心算测验展开讨论,那么基于以往的经验来看,该类试题往往适合采用枚的方式进行解答[^2]。下面给出一种具体的实现方案: ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; // 输入人数n bool flag[n+1]; memset(flag, false, sizeof(flag)); int a[n]; for(int i=1;i<=n;++i){ cin>>a[i]; for(int j=1;j<i;++j) for(int k=j+1;k<i;++k) if(a[j]+a[k]==a[i]) {flag[i]=true;break;} } int cnt=0; for(int i=1;i<=n;++i)if(!flag[i]) ++cnt; cout<<cnt<<"\n"; } ``` 上述代码实现了对每个数是否能由其他两个不同的数组合而成这一性质进行了判断,并统计满足特定条件的数量。这种方法不仅易于理解而且便于编码实现,非常适合初学者练习使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值