相相关配准

Phase correlation

From Wikipedia, the free encyclopedia

In image processingphase correlation is a method of image registration, and uses a fast frequency-domain approach to estimate the relative translative offset between two similar images.

Contents

   [hide

[edit]Example

The following image demonstrates the usage of phase correlation to determine relative translative movement between two images corrupted by independent Gaussian noise. The image was translated by (30,33) pixels. Accordingly, one can clearly see a peak in the phase-correlation representation at approximately (30,33).

Phase correlation.png

[edit]Method

Given two input images \ g_a and \ g_b:

Apply a window function (e.g., a Hamming window) on both images to reduce edge effects. Then, calculate the discrete 2D Fourier transform of both images.

\ \mathbf{G}_a = \mathcal{F}\{g_a\}, \; \mathbf{G}_b = \mathcal{F}\{g_b\}

Calculate the cross-power spectrum by taking the complex conjugate of the second result, multiplying the Fourier transforms together elementwise, and normalizing this product elementwise.

\ R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b|}

Obtain the normalized cross-correlation by applying the inverse Fourier transform.

\ r = \mathcal{F}^{-1}\{R\}

Determine the location of the peak in \ r (possibly using sub-pixel edge detection[clarification needed]).

\ (\Delta x, \Delta y) = \arg \max_{(x, y)}\{r\}

[edit]Rationale

The method is based on the Fourier shift theorem. Let the two images \ g_a and \ g_b be circularly-shifted versions of each other:

\ g_b(x,y) \ \stackrel{\mathrm{def}}{=}\   g_a((x - \Delta x) \bmod M, (y - \Delta y) \bmod N)

(where the images are \ M \times N in size).

Then, the discrete Fourier transforms of the images will be shifted relatively in phase:

\mathbf{G}_b(u,v) = \mathbf{G}_a(u,v) e^{-2 \pi i (\frac{u \Delta x}{M} + \frac{v \Delta y}{N}) }

One can then calculate the normalized cross-power spectrum to factor out the phase difference:

\begin{align}  R(u,v) &= \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|} \\         &= \frac{ \mathbf{G}_a \mathbf{G}_a^* e^{2 \pi i (\frac{u \Delta x}{M} + \frac{v \Delta y}{N}) }}{|\mathbf{G}_a \mathbf{G}_a^* e^{2 \pi i (\frac{u \Delta x}{M} + \frac{v \Delta y}{N}) }|} \\         &= \frac{ \mathbf{G}_a \mathbf{G}_a^* e^{2 \pi i (\frac{u \Delta x}{M} + \frac{v \Delta y}{N}) }}{|\mathbf{G}_a \mathbf{G}_a^*|} \\         &= e^{2 \pi i (\frac{u \Delta x}{M} + \frac{v \Delta y}{N}) }\end{align}

since the magnitude of an imaginary exponential always is one, and the phase of \ \mathbf{G}_a \mathbf{G}_a^* always is zero.

The inverse Fourier transform of a complex exponential is a Kronecker delta, i.e. a single peak:

\ r(x,y) = \delta(x + \Delta x, y + \Delta y)

This result could have been obtained by calculating the cross correlation directly. The advantage of this method is that the discrete Fourier transform and its inverse can be performed using thefast Fourier transform, which is much faster than correlation for large images.

[edit]Benefits

Unlike many spatial-domain algorithms, the phase correlation method is resilient to noise, occlusions, and other defects typical of medical or satellite images.[citation needed]

The method can be extended to determine rotation and scaling differences between two images by first converting the images to log-polar coordinates. Due to properties of the Fourier transform, the rotation and scaling parameters can be determined in a manner invariant to translation.[1][2]

[edit]Limitations

In practice, it is more likely that \ g_b will be a simple linear shift of \ g_a, rather than a circular shift as required by the explanation above. In such cases, \ r will not be a simple delta function, which will reduce the performance of the method. In such cases, a window function should be employed during the Fourier transform to reduce edge effects, or the images should be zero padded so that the edge effects can be ignored. If the images consist of a flat background, with all detail situated away from the edges, then a linear shift will be equivalent to a circular shift, and the above derivation will hold exactly.

For periodic images (such as a chessboard), phase correlation may yield ambiguous results with several peaks in the resulting output.

[edit]Applications

Phase correlation is the preferred method for television standards conversion, as it leaves the fewest artifacts.

[edit]See also

General

Television

[edit]References

  1. ^ E. De Castro and C. Morandi "Registration of Translated and Rotated Images Using Finite Fourier Transforms", IEEE Transactions on pattern analysis and machine intelligence, Sept. 1987
  2. ^ B. S Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration”, IEEE Transactions on Image Processing 5, no. 8 (1996): 1266–1271.

[edit]External links


来源:http://en.wikipedia.org/wiki/Phase_correlation
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值