前言
前面说到了递归在裴波那契数列计算中并不怎么适用,那么它适合什么样的场景呢?
我们继续举例和python3对比测试来说明。
一、例二
下面我们试试阶乘,在前面的代码上稍稍改一下就可以了:
#include <sstream>
#include <iostream>
using namespace std;
long long recur(int n){
if(n==0 || n==1) return 1;
return recur(n-1) * n;
}
int main(){
int n = 10;
long long res = recur(n);
cout << " N! is: " << res << endl;
}
这里很显然任何数乘以0都是0,所以阶乘的0返回的是1。嗯n==1这个条件是不必要的,因为是改前面代码得来的。所以懒得删了~
同样,阶乘的结果应该是很大的数,在不采取超大数据特殊处理的情况下,不能用太大的测试数据,先试试10的阶乘:
再加大到20:
它甚至用时更少了!当然,正经测试应该取n次的平均值,我们这里只是为了说明问题,不必在意是不是真的用时更少,明白在数据加大的情况下,用时基本大差不差就行了。
下面用python3写一个for循环计算的函数来试试,同样略微改巴改巴就可以了:
import time
def factorial(n):
res = 1
for i in range(2, n+1):
res *= i
return res
s = time.process_time()
res = factorial(10)
end = time.process_time()
r = end-s
print("N! is: " + str(res))
print("用时:", r)
这里n+1是因为python的range是不包含最后n的。在python中这类序列大多数情况都不包含最后一个。这和C++不同,C++是尾后指针。
也先测试10的阶乘:
再测试20:
可以看出,用时略有增长,但也相差不大。
C++和python3计算的结果一样,符合预期。就不用再去找c验算了~
二、为什么
从上面的测试结果可以看出,在阶乘计算的这个函数中,递归是很适用的,嗯~ 虽然这个代码也不比for循环计算的代码简洁到哪去。
我们可以分析一下为什么呢?
递归裴波那契数列计算的空间复杂度为(n),时间复杂度为(2^n)。而for循环计算只有(n)的复时间杂度度。递归裴波那契时,冗余计算太多,n-1需要计算n-2,n-3。同样的n-2也要计算n-3。
可能描述得不是太明白,有兴趣的同鞋自己想想吧。
总结
递归的使用原则:
1、递归程序要有基准,就是要有出口,就像上面的if(n0 || n1) 这就是出口,到了这就return 1了。
2、要有进展,每次递归总要向着基准前进一点,就是上面的n-1。它使得n更接近于出口,0或1。
3、所求解的问题要有递归性,要有能够实现自我调用的重复性。
4、递归依赖系统的栈运行,时间、空间复杂度都较高,特别某些情况是递归深度指数级的时间复杂度,就像前面的裴波那契数列计算。
5、要有效益,虽然大多情况下,递归能让代码更简洁,也不能为了代码好看而在同一个实例中,去做重复性的工作!就如递归裴波那契数列计算时重复计算n-2、n-3、n-4…