一句话题解

由于有些题是在是不想写就开个坑吧(老年选手的悲哀

「MtOI2019」埋骨于弘川

题目链接

Solution

显然所有f(n,k)都是2^x,不如取对数变成加法
那么我们有 f ( n , 0 ) = ∑ i = 1 42 f ( n − i , 0 ) ∗ i f(n,0)=\sum_{i=1}^{42}f(n-i,0)*i f(n,0)=i=142f(ni,0)i,这是一个线性递推
并且 f ( n , k ) = f ( n − 1 , k ) + f ( n , k − 1 ) f(n,k)=f(n-1,k)+f(n,k-1) f(n,k)=f(n1,k)+f(n,k1)这个是 f ( n , 0 ) f(n,0) f(n,0)的k阶前缀和
线性递推的前缀和也是线性递推,并且递推式为原递推式在前面补一个-1的差分
然后就只需要做k阶差分之后套线性递推模板
但由于我们取了对数所以模数是998244352没有逆元要写MTT
差分只能用倍增快速幂了。。。
写**啊

[CFgym102114 A] Always Online

题目链接

Solution

可以发现题目中的图就是仙人掌
证明的话考虑反证法,如果有一条边属于多个环那么这条边的两个端点的不交路劲数肯定>2
那么两点最小割要么割一条桥边要么割一个环上的两条边
简单分析一下环上边权最小的肯定被割,那么我们可以删去这条边,然后把环上其他边的容量加上这条边的容量
然后问题就变到一棵树上,把所有边按容量排序加入并查集维护二进制每一位为0/1的点的个数即可

[CFgym102114 D] Daylight

题目链接

Solution

答案=到u距离<=w的点+到v距离<=w的点-到u,v中点距离<=w-dis(u,v)/w的点
考虑把每条边的中点都视作一个点,w*2,问题变成动态求到某个点距离<=w的点数
点分+线段树即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值