由于有些题是在是不想写就开个坑吧(老年选手的悲哀
「MtOI2019」埋骨于弘川
Solution
显然所有f(n,k)都是2^x,不如取对数变成加法
那么我们有
f
(
n
,
0
)
=
∑
i
=
1
42
f
(
n
−
i
,
0
)
∗
i
f(n,0)=\sum_{i=1}^{42}f(n-i,0)*i
f(n,0)=∑i=142f(n−i,0)∗i,这是一个线性递推
并且
f
(
n
,
k
)
=
f
(
n
−
1
,
k
)
+
f
(
n
,
k
−
1
)
f(n,k)=f(n-1,k)+f(n,k-1)
f(n,k)=f(n−1,k)+f(n,k−1)这个是
f
(
n
,
0
)
f(n,0)
f(n,0)的k阶前缀和
线性递推的前缀和也是线性递推,并且递推式为原递推式在前面补一个-1的差分
然后就只需要做k阶差分之后套线性递推模板
但由于我们取了对数所以模数是998244352没有逆元要写MTT
差分只能用倍增快速幂了。。。
写**啊
[CFgym102114 A] Always Online
Solution
可以发现题目中的图就是仙人掌
证明的话考虑反证法,如果有一条边属于多个环那么这条边的两个端点的不交路劲数肯定>2
那么两点最小割要么割一条桥边要么割一个环上的两条边
简单分析一下环上边权最小的肯定被割,那么我们可以删去这条边,然后把环上其他边的容量加上这条边的容量
然后问题就变到一棵树上,把所有边按容量排序加入并查集维护二进制每一位为0/1的点的个数即可
[CFgym102114 D] Daylight
Solution
答案=到u距离<=w的点+到v距离<=w的点-到u,v中点距离<=w-dis(u,v)/w的点
考虑把每条边的中点都视作一个点,w*2,问题变成动态求到某个点距离<=w的点数
点分+线段树即可