Description
给定一张n个点,m条边的DAG,1是唯一一个入度为0的点。每条边都有经过费用,你每次可以从1走到任意节点,每条边需要经过至少一次,求最小费用。
n<=300,m<=5000,每个点的入度<=50。
Solution
好像DAG上的题都可以用网络流来解决。(壮哉我大网络流神教%%%)
上下界费用流
既然我们每条边都至少需要经过一次,最多可以经过无数次,所以我们可以把每条边的上界设为∞,下界设为1,费用为1。然后,因为可以在任意点结束,所以我们建立汇点,从每个点向汇点连上界为∞,下界为0,费用为0的边。因为可以走无数次,每次都从1出发,就建立源点,从它向1连上界为∞,下界为0,费用为0的边,然后跑上下界最小费用可行流就行了。
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define N 305
#define M 100005
#define inf 0x7fffffff/3
using namespace std;
int n,S,T,ss,tt,l,ans,x,y,z,id,dis[N],bz[N],used[N];
int t[M],f[M],v[M],next[M],last[N],now[N];
void add(int x,int y,int z,int c) {
t[++l]=y;f[l]=z;v[l]=c;next[l]=last[x];last[x]=l;
t[++l]=x;f[l]=0;v[l]=-c;next[l]=last[y];last[y]=l;
}
void line(int x,int y,int up,int low,int c) {
add(x,y,up-low,c);
if (low) {used[y]+=low,used[x]-=low;ans+=c*low;}
}
int aug(int x,int y,int c) {
bz[x]=id;
if (x==tt) {
ans+=y*c;return y;
}
for(int i=now[x];i;i=next[i])
if (bz[t[i]]!=id&&f[i]&&dis[x]==dis[t[i]]+v[i]) {
int k=aug(t[i],min(f[i],y),c+v[i]);
if (k) {
f[i]-=k;f[i^1]+=k;now[x]=i;
return k;
}
}
now[x]=0;return 0;
}
bool find() {
int k=inf;
fo(i,0,tt)
if (bz[i]==id)
for(int j=last[i];j;j=next[j])
if (bz[t[j]]!=id&&f[j]) k=min(k,dis[t[j]]-dis[i]+v[j]);
if (k==inf) return 1;
fo(i,0,tt) if (bz[i]==id) dis[i]+=k;
return 0;
}
int main() {
freopen("story.in","r",stdin);
freopen("story.out","w",stdout);
scanf("%d",&n);S=0,T=n+1;ss=n+2,tt=n+3;l=1;
line(S,1,inf,0,0);line(T,S,inf,0,0);
fo(i,1,n) {
scanf("%d",&y);line(i,T,inf,0,0);
fo(j,1,y) scanf("%d%d",&x,&z),line(i,x,inf,1,z);
}
fo(i,S,T)
if (used[i]>0) add(ss,i,used[i],0);else
add(i,tt,-used[i],0);
do{
id++;fo(i,0,tt) now[i]=last[i];
while (aug(ss,inf,0)) id++;
}while (!find());
printf("%d",ans);
}