GDOI 2016 Day1 T4 疯狂动物城

Description

给出一个N个节点的数,和M次操作。每次操作的类型如下:
1,x,y,z,将x到y的路径上的ai加上z
2,x,y,询问x到y的路径上,ai*(1+2+..+n-i)的和
3,x,将所有的a变更回第x次修改之后的状态。
强制在线。
N,M<=10^5.

Solution

码农题(hehe)
愉快的农民生活
先考虑一下序列上的问题。

Ans=i=1nai(ni+1)(ni)/2

展开得
Ans=12i=1naii2aii(2n+1)+ain(n+1)

发现 aii2 , aii , ai 的系数都是常数,于是维护这个东西就可以了。
合并自行YY(看Code)
修改也可以愉快的解决了。
放到树上呢?
树链剖分!
而且要有方向,要写两遍。。。
码量已经起飞。。。
等等,3操作呢?
可持久化(区间修改+lazy标记)
辣眼睛呛鼻子排宿便清肠道。。。。(王尼玛上身)
祝君码的愉快O(∩_∩)O~

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define rep(i,a) for(int i=last[a];i;i=next[i])
#define N 100005
using namespace std;
typedef long long ll;
const int mo=20160501;
const int inf=0x7fffffff;
const ll n2=10080251;
int n,m,l,x,y,z,now,tot,cnt,bz;
int a[N],c[N*3],le[N*50],ri[N*50],root[N];
int son[N],size[N],top[N],w[N],d[N],fa[N][20];
int t[N*2],next[N*2],last[N],p[N*50],lazy[N*50];
ll ans;
ll mult(ll x,ll y) {
    if (x%3) return y / 3%mo*x%mo;
    else return x/3%mo*y%mo;
}
struct dd{
    ll sqr,sum,tot,len;
    void clear() {sqr=sum=tot=len=0;}
    void add(ll z) {
        tot=(tot+len*z%mo)%mo;
        sum=(sum+len*(len+1)%mo*n2%mo*z%mo)%mo;
        sqr=(sqr+mult(len*(len+1)/2,2*len+1)*z%mo)%mo;
    }
    friend dd operator+(dd y,dd z) {
        dd x;
        x.len=y.len+z.len;
        x.tot=(y.tot+z.tot)%mo;
        x.sum=(y.sum+y.tot*z.len%mo+z.sum)%mo;
        x.sqr=(y.sqr+2*z.len*y.sum%mo+z.len*z.len%mo*y.tot%mo+z.sqr)%mo;
        return x;
    }
}an,key;
struct note{dd up,down;}tr[N*50],zero;
void add(int x,int y) {
    t[++l]=y;next[l]=last[x];last[x]=l;
}
void dfs(int x,int y) {
    int k=0;size[x]=1;d[x]=d[y]+1;fa[x][0]=y;
    rep(i,x) if (t[i]!=y) {
        dfs(t[i],x);size[x]+=size[t[i]];
        if (size[t[i]]>k) k=size[t[i]],son[x]=t[i];
    }
}
void make(int x,int y) {
    top[x]=y;w[x]=++tot;c[tot]=x;
    if (!son[x]) return;
    make(son[x],y);
    rep(i,x) if (t[i]!=fa[x][0]&&t[i]!=son[x]) make(t[i],t[i]);
}
int lca(int x,int y) {
    if (d[x]<d[y]) swap(x,y);
    fd(j,19,0) if (d[fa[x][j]]>d[y]) x=fa[x][j];
    if (d[x]!=d[y]) x=fa[x][0];
    fd(j,19,0) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
    if (x!=y) return fa[x][0];else return x;
}
int len(int x,int y) {
    int z=lca(x,y);
    return d[x]+d[y]-2*d[z]+1;
}
void back(int &v,int rt,ll z) {
    if (!v) return;
    tr[++tot]=tr[v];
    le[tot]=le[v];ri[tot]=ri[v];
    p[tot]=rt;lazy[tot]=lazy[v]+z;v=tot;
    tr[v].up.add(z);
    tr[v].down.add(z);
}
void down(int v) {
    if (lazy[v]) {
        back(le[v],p[v],lazy[v]);
        back(ri[v],p[v],lazy[v]);
        lazy[v]=0;
    }
}
note merge(note y,note z) {
    note x;
    x.down=z.down+y.down;
    x.up=y.up+z.up;
    return x;
}
void build(int &v,int l,int r) {
    tr[++tot]=tr[v];v=tot;
    if (l==r) {
        tr[v].down.len=tr[v].up.len=1;
        tr[v].down.tot=tr[v].up.tot=a[c[l]];
        tr[v].down.sum=tr[v].up.sum=a[c[l]];
        tr[v].down.sqr=tr[v].up.sqr=a[c[l]];
        return;
    }
    int m=(l+r)/2;
    build(le[v],l,m);build(ri[v],m+1,r);
    tr[v]=merge(tr[le[v]],tr[ri[v]]);
}
void revise(int &v,int l,int r,int x,int y,ll z) {
    int m=(l+r)/2;down(v);
    if (l==x&&r==y){back(v,cnt,z);return;}
    if (p[v]!=cnt) {
        tr[++tot]=tr[v];
        le[tot]=le[v];ri[tot]=ri[v];
        p[tot]=cnt;v=tot;
    }
    if (y<=m) revise(le[v],l,m,x,y,z);
    else if (x>m) revise(ri[v],m+1,r,x,y,z);
    else revise(le[v],l,m,x,m,z),revise(ri[v],m+1,r,m+1,y,z);
    tr[v]=merge(tr[le[v]],tr[ri[v]]);
}
void change(int x,int y,int z) {
    int f1=top[x],f2=top[y];root[++cnt]=root[now];
    while (f1!=f2) {
        if (d[f1]<d[f2]) swap(f1,f2),swap(x,y);
        revise(root[cnt],1,n,w[f1],w[x],z);
        x=fa[f1][0];f1=top[x];
    }
    if (d[x]>d[y]) swap(x,y);
    revise(root[cnt],1,n,w[x],w[y],z);
    now=cnt;
}
note find(int v,int l,int r,int x,int y) {
    if (!v) return zero;
    int m=(l+r)/2;down(v);
    if (l==x&&r==y) return tr[v];
    if (y<=m) return find(le[v],l,m,x,y);
    else if (x>m) return find(ri[v],m+1,r,x,y);
    else return merge(find(le[v],l,m,x,m),find(ri[v],m+1,r,m+1,y));
}
void query(int x,int y) {
    an.clear();key.clear();
    int f=top[x];int z=lca(x,y);
    while (d[f]>d[z]) {
        an=find(root[now],1,n,w[f],w[x]).up+an;
        x=fa[f][0];f=top[x];
    }f=top[y];
    while (d[f]>d[z]) {
        key=key+find(root[now],1,n,w[f],w[y]).down;
        y=fa[f][0];f=top[y];
    }
    if (d[x]>d[y]) an=find(root[now],1,n,w[y],w[x]).up+an;
    else key=key+find(root[now],1,n,w[x],w[y]).down;
    an=key+an;
}
int main() {
    freopen("zootopia.in","r",stdin);
    freopen("zootopia.out","w",stdout);
    scanf("%d%d",&n,&m);
    fo(i,1,n-1) scanf("%d%d",&x,&y),add(x,y),add(y,x);
    fo(i,1,n) scanf("%d",&a[i]);
    dfs(1,0);make(1,1);tot=0;
    fo(j,1,19) fo(i,1,n) fa[i][j]=fa[fa[i][j-1]][j-1];
    build(root[0],1,n);
    for(;m;m--) {
        scanf("%d",&bz);
        if (bz==1) {
            scanf("%d%d%d",&x,&y,&z);
            x^=ans;y^=ans;
            change(x,y,z);
        } else if (bz==2) {
            scanf("%d%d",&x,&y);x^=ans;y^=ans;
            query(x,y);ll L=len(x,y);
            ans=(L*(L+1)%mo*an.tot%mo-(2*L+1)*an.sum%mo+an.sqr+mo)%mo;
            ans=(ans*n2)%mo;
            printf("%lld\n",ans);
        } else scanf("%d",&x),now=x^ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值