Description
给出一个有n位的无前导0正整数,再给出m个限制,每个限制形如l1…r1,l2..r2表示这个数的l1~r1位和第l2~r2位是相等的。求这样的数的个数。
n,m<=10^5
Solution
我们可以先来考虑一下暴力。
对于这一个区间,我们暴力把它们用并查集并起来。
那么100%呢?
我们可以用f[i][j]表示[i~i+2^j-1]这一段区间属于哪一个集合。
若没有则等于0.
那么每次合并我们可以把这个限制拆成log个区间,依次合并起来。
还有,若f[i][j]和f[s][t]同属一个集合,那么f[i][j-1]和f[s][t-1],f[i+2^(j-1)][j-1]和f[s+2^(t-1)][t-1]也同属一个集合。
每次用并查集合并就好了。
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define N 100005
#define mo 1000000007
using namespace std;
typedef long long ll;
int fa[N*17],base[N*17],log[N*17],two[17],id[N][17];
int n,m,tot,l1,l2,r1,r2;
int get(int x) {
return fa[x]?fa[x]=get(fa[x]):x;
}
void merge(int x,int y) {
x=get(x);y=get(y);
if (x!=y) fa[y]=x;
}
int main() {
scanf("%d%d",&n,&m);two[0]=1;
fo(i,1,16) two[i]=two[i-1]*2;
fo(i,1,n) fo(j,0,16) id[i][j]=++tot,base[tot]=i,log[tot]=j;
fo(i,1,m) {
scanf("%d%d%d%d",&l1,&r1,&l2,&r2);
fd(j,16,0) if (l1+two[j]-1<=r1) {
merge(id[l1][j],id[l2][j]);
l1+=two[j];l2+=two[j];
}
}
fd(j,16,1)
fo(i,1,n) {
int x=get(id[i][j]);
int a=base[x],b=log[x];
merge(id[a][b-1],id[i][j-1]);
if (i+two[j-1]<=n) merge(id[a+two[b-1]][b-1],id[i+two[j-1]][j-1]);
}
ll ans=9;bool bz=0;
fo(i,1,n) if (!fa[id[i][0]]) {
if (bz) ans=ans*10%mo;bz=1;
}
printf("%lld",ans);
}