[bzoj3522][bzoj4543][POI2014]HOTEL

Description

给出一棵树,求这棵树中有多少种方法选择三个点使得这三个点之间的距离两两相等。
n<=1e5

Solution

首先我们来考虑一种奇怪的可优化的N^2做法。
设Fi,j表示i的子树中到i的距离为j的点的个数
Gi,j表示i的子树中有多少个点对满足到他们的lca的距离为d,同时lca到i的距离为d-j
也就是还能再伸出j的长度的点对数。
首先我们考虑选择一个儿子继承可以发现转移的形式相当于数组位移一位,此时的答案就是Gx,0
然后我们枚举其他儿子转移,转移的复杂度就是这个儿子往下的深度。
那么我们可以用一个。。。。听说叫做长链剖分的做法。。。
普通的重链剖分是选择size最大的儿子作为偏爱儿子
那么长链剖分我们就选择往下的深度最大的儿子作为偏爱儿子
那么每次Dp我们继承偏爱儿子的dp值,考虑数组位移是O(1)的
接着把所有的轻儿子暴力合并,可以发现复杂度相当于那个儿子所在的链的长度。
那么总复杂度就是O(n)的
至于空间的话你给每个长链分配正比于它的链长的空间就也是O(n)的
由于懒得考虑细节和加上懒得分析实际的空间就抄了栋栋的标魔改了一发
感觉指针这个东西还是很玄妙的,所以就把它改成了不用指针的
这个应该会好懂一点吧。。。

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define rep(i,a) for(int i=last[a];i;i=next[i])
using namespace std;
typedef long long ll;
const int N=1e5+5;
int n,x,y,t[N*2],next[N*2],last[N],dep[N],mx[N],l,f[N],g[N],now=5;
ll fty[N*5],gty[N*5],ans;
void add(int x,int y) {t[++l]=y;next[l]=last[x];last[x]=l;}
void dfs(int x,int y) {
    dep[x]=dep[y]+1;mx[x]=x;
    rep(i,x) 
        if (t[i]!=y) {
            dfs(t[i],x);
            if (dep[mx[t[i]]]>dep[mx[x]]) mx[x]=mx[t[i]];
        }
    rep(i,x)
        if (t[i]!=y&&(mx[x]!=mx[t[i]]||x==1)) {
            now+=dep[mx[t[i]]]-dep[x]+1;
            f[mx[t[i]]]=now;
            g[mx[t[i]]]=(now+=1);
            now+=(dep[mx[t[i]]]-dep[x])*2+1;
        }
}
void dp(int x,int y) {
    rep(i,x) 
        if (t[i]!=y) {
            dp(t[i],x);
            if (mx[t[i]]==mx[x]) {
                f[x]=f[t[i]]-1;
                g[x]=g[t[i]]+1;
            }
        }
    fty[f[x]]=1;
    ans+=gty[g[x]];
    rep(i,x)
        if (t[i]!=y&&mx[t[i]]!=mx[x]) {
            fo(j,0,dep[mx[t[i]]]-dep[x]) {
                ans+=fty[f[x]+j-1]*gty[g[t[i]]+j];
                ans+=gty[g[x]+j+1]*fty[f[t[i]]+j];
            }
            fo(j,0,dep[mx[t[i]]]-dep[x]) {
                fty[f[x]+j]+=fty[f[t[i]]+j-1];
                gty[g[x]+j]+=gty[g[t[i]]+j+1];
                gty[g[x]+j+1]+=fty[f[x]+j+1]*fty[f[t[i]]+j];
            }
        }
}
int main() {
    freopen("tree.in","r",stdin);
    freopen("tree.out","w",stdout);
    scanf("%d",&n);
    fo(i,1,n-1) {
        scanf("%d%d",&x,&y);
        add(x,y);add(y,x);
    }
    dfs(1,0);dp(1,0);
    printf("%lld\n",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节的无向图,每个节都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节 $1$ 到节 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含个正整数 $n$ 和 $m$,表示节数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是 $1$ 到 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解 $1$ 到 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意:Floyd算法计算任意之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值