常系数齐次线性递推

本文介绍了常系数齐次线性递推的概念,包括特征多项式、Cayley-Hamilton定理,以及如何求解此类递推的通项公式。通过举例和算法解析,展示了在线性代数中的应用。
摘要由CSDN通过智能技术生成

前言

上了高二学了数列,知道了如何给出递推求通项,也从数竞同学那里听来了高阶常系数齐次线性递推的通项求法。
那么OI上如何应用呢?
百度了一下发现自己在这一块的技能点为0,就决定学一学QwQ
线性代数渣没办法

特征多项式

若有常数 λ \lambda λ,向量 v → \overrightarrow v v ,对于n阶矩阵A满足 λ v → = A v → \lambda\overrightarrow v=A\overrightarrow v λv =Av
那么称 λ \lambda λ为A的特征值, v → \overrightarrow v v 为A的特征向量
有一个定理,秩为k的矩阵有k组线性无关的特征向量
我们把式子变一下形
( A − λ I ) v → = 0 (A-\lambda I)\overrightarrow v=0 (AλI)v =0
I是单位矩阵
这个式子有解的充要条件为 d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(AλI)=0
左边的东西显然是一个关于 λ \lambda λ的n次多项式,称作A的特征多项式
这个多项式的n个根就是n组特征值了

Cayley-Hamilton定理

设矩阵A的特征多项式为f(x),那么f(A)=0
这里f(A)可以理解成把多项式里面的乘法换成矩阵乘法
证明:考虑写成 f ( A ) = ∏ i = 1 n ( λ i I − A ) f(A)=\prod_{i=1}^{n}(\lambda_i I-A) f(A)=i=1n(λiIA)
如果对于每个特征向量 v i → \overrightarrow {v_i} vi 都有 v i → f ( A ) = 0 \overrightarrow {v_i}f(A)=0 vi f(A)=0,由于这些特征向量线性无关,所以有f(A)=0
考虑一个特征向量和其对应的特征值
v i → ( λ i I − A ) = v i → λ i I − v i → A \overrightarrow {v_i}(\lambda_i I-A)=\overrightarrow {v_i}\lambda_i I-\overrightarrow {v_i}A vi (λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值