前言
上了高二学了数列,知道了如何给出递推求通项,也从数竞同学那里听来了高阶常系数齐次线性递推的通项求法。
那么OI上如何应用呢?
百度了一下发现自己在这一块的技能点为0,就决定学一学QwQ
线性代数渣没办法
特征多项式
若有常数 λ \lambda λ,向量 v → \overrightarrow v v,对于n阶矩阵A满足 λ v → = A v → \lambda\overrightarrow v=A\overrightarrow v λv=Av
那么称 λ \lambda λ为A的特征值, v → \overrightarrow v v为A的特征向量
有一个定理,秩为k的矩阵有k组线性无关的特征向量
我们把式子变一下形
( A − λ I ) v → = 0 (A-\lambda I)\overrightarrow v=0 (A−λI)v=0
I是单位矩阵
这个式子有解的充要条件为 d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(A−λI)=0
左边的东西显然是一个关于 λ \lambda λ的n次多项式,称作A的特征多项式
这个多项式的n个根就是n组特征值了
Cayley-Hamilton定理
设矩阵A的特征多项式为f(x),那么f(A)=0
这里f(A)可以理解成把多项式里面的乘法换成矩阵乘法
证明:考虑写成 f ( A ) = ∏ i = 1 n ( λ i I − A ) f(A)=\prod_{i=1}^{n}(\lambda_i I-A) f(A)=∏i=1n(λiI−A)
如果对于每个特征向量 v i → \overrightarrow {v_i} vi都有 v i → f ( A ) = 0 \overrightarrow {v_i}f(A)=0 vif(A)=0,由于这些特征向量线性无关,所以有f(A)=0
考虑一个特征向量和其对应的特征值
v i → ( λ i I − A ) = v i → λ i I − v i → A \overrightarrow {v_i}(\lambda_i I-A)=\overrightarrow {v_i}\lambda_i I-\overrightarrow {v_i}A vi(λ