二阶常系数齐次线性递推数列

本文介绍了二阶常系数齐次线性递推数列的定义,通过特征方程求解通项公式的方法,并探讨了特殊情况下通项公式可能为复数的情形。结合韦达定理,解释了如何找到递推关系的关键参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

若数列 \(\{a\}\) 满足 \(a_n=c_1a_{n-1}+c_2a_{n-2}\)\(c_1,c_2\) 为常数,就称这种数列为二阶常系数齐次线性递推数列

求解

加入能够将递推关系式改写为 \((a_n-ka_{n-1})=p(a_{n-1}-ka_{n-1})\) 的形式,就可以求出 \(a_n-ka_{n-1}\) 的通项公式。

根据韦达定理可得:\(k,p\)\(x^2-c_1x-c_2=0\) 的两根(这个方程又称为这个递推式的特征方程)

因此可得:

\[a_n=\dfrac{1}{k-p}\left[\left(k^{n-1}-p^{n-1}\right)a_2\left(k^{n-2}-p^{n-2}\right)a_1\right] \]

特别的,当 \(k=p\) 时:

\[a_n=(n-1)k^{n-2}a_2-(n-2)k^{n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值