定义
若数列 \(\{a\}\) 满足 \(a_n=c_1a_{n-1}+c_2a_{n-2}\) ,\(c_1,c_2\) 为常数,就称这种数列为二阶常系数齐次线性递推数列。
求解
加入能够将递推关系式改写为 \((a_n-ka_{n-1})=p(a_{n-1}-ka_{n-1})\) 的形式,就可以求出 \(a_n-ka_{n-1}\) 的通项公式。
根据韦达定理可得:\(k,p\) 为 \(x^2-c_1x-c_2=0\) 的两根(这个方程又称为这个递推式的特征方程)
因此可得:
\[a_n=\dfrac{1}{k-p}\left[\left(k^{n-1}-p^{n-1}\right)a_2\left(k^{n-2}-p^{n-2}\right)a_1\right] \]
特别的,当 \(k=p\) 时:
\[a_n=(n-1)k^{n-2}a_2-(n-2)k^{n