1.题目
题目描述
今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:
设有一个长度为 N N N 的数字串,要求选手使用 K K K 个乘号将它分成 K + 1 K+1 K+1 个部分,找出一种分法,使得这 K + 1 K+1 K+1 个部分的乘积能够为最大。
同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:
有一个数字串: 312 312 312,当 N = 3 , K = 1 N=3,K=1 N=3,K=1 时会有以下两种分法:
1. 3 × 12 = 36 3 \times 12=36 3×12=36
2. 32 × 2 = 62 32 \times 2=62 32×2=62
这时,符合题目要求的结果是: 31 × 2 = 62 31 \times 2=62 31×2=62
现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。
输入格式
程序的输入共有两行:
第一行共有
2
2
2 个自然数
N
,
K
N,K
N,K(
6
≤
N
≤
40
,
1
≤
K
≤
6
6 \le N \le 40,1 \le K \le 6
6≤N≤40,1≤K≤6)
第二行是一个长度为
N
N
N 的数字串。
输出格式
结果显示在屏幕上,相对于输入,应输出所求得的最大乘积(一个自然数)。
输入输出样例
输入 #1
4 2
1231
输出 #1
62
2.解题思路
主要思路:动态规划。
- 步骤一:定义动态规划数组
d
p
dp
dp
由于最大乘积与乘号放置的位置相关,则定义二维数组 d p [ i ] [ j ] dp[i][j] dp[i][j],表示在数字串的第 i i i 个数字后放置第 j j j 个乘号后该乘号之前式子乘积的最大值。 - 步骤二:定义状态转移方程
根据 d p dp dp 的定义,显然 d p [ i ] [ j ] dp[i][j] dp[i][j] 的值与 d p [ x ] [ j − 1 ] dp[x][j-1] dp[x][j−1] 有关,其中 x x x 的范围应为 j − 1 ≤ x ≤ i − 1 j-1 \le x \le i-1 j−1≤x≤i−1,即第 j − 1 j-1 j−1 个乘号能放置的位置为数字串的第 j − 1 j-1 j−1 个数字后到第 i − 1 i-1 i−1 个数字后,则状态转移方程为: d p [ i ] [ j ] = max j − 1 ≤ x ≤ i − 1 { d p [ x ] [ j − 1 ] × v a l u e [ x , i − 1 ] } dp[i][j]=\max_{j-1 \le x \le i-1} \{ dp[x][j-1] \times value[x,i-1]\} dp[i][j]=j−1≤x≤i−1max{dp[x][j−1]×value[x,i−1]}其中, v a l u e [ x , i − 1 ] value[x,i-1] value[x,i−1] 表示数字串第 x x x 个数字到第 i − 1 i-1 i−1 个数字。
根据状态转移方程,最终结果应为 max K ≤ x ≤ N − 1 { d p [ x ] [ K ] × v a l u e [ x + 1 , N ] } \max_{K \le x \le N-1}\{dp[x][K] \times value[x+1,N]\} K≤x≤N−1max{dp[x][K]×value[x+1,N]} - 步骤三:设置初始值
由于状态转移方程中存在乘法,令 d p [ 0 ] [ j ] = d p [ i ] [ 0 ] = 1 dp[0][j]=dp[i][0]=1 dp[0][j]=dp[i][0]=1,这样可以避免状态转移方程的结果均为 0 0 0,且题目要求最大乘积,即使动态规划数组中存在 0 0 0,也应该设为 1 1 1,否则之后的结果将均为 0 0 0。
3.代码
import java.math.BigInteger;
import java.util.Scanner;
/**
* @author xiaoyaosheny
* @discription 洛谷P1018 [NOIP2000 提高组] 乘积最大
* @date 2021/7/30
*/
public class Main {
/**
* 程序入口
* @param args 输入参数
*/
public static void main(String[] args) {
// 获取输入
Scanner scanner = new Scanner(System.in);
int N = scanner.nextInt();
int K = scanner.nextInt();
String value = scanner.next();
BigInteger[][] dp = new BigInteger[N][K + 1];
for (int i = 0; i < N; i++) dp[i][0] = new BigInteger("1");
for (int i = 0; i < K + 1; i++) dp[0][i] = new BigInteger("1");
for (int i = 1; i < N; i++) {
for (int j = 1; j < K + 1; j++) {
BigInteger max = new BigInteger("0");
for (int k = j - 1; k <= i - 1; k++) {
BigInteger number = new BigInteger(value.substring(k, i));
max = max.max(dp[k][j - 1].multiply(number));
}
dp[i][j] = max;
}
}
BigInteger result = new BigInteger("0");
for (int i = K; i <= N - 1; i++) {
result = result.max(dp[i][K].multiply(new BigInteger(value.substring(i, N))));
}
// 输出结果
System.out.println(result);
}
}