题解:洛谷P1018 [NOIP2000 提高组] 乘积最大

题解:洛谷P1018 [NOIP2000 提高组] 乘积最大

1.题目

题目描述

今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:

设有一个长度为 N N N 的数字串,要求选手使用 K K K 个乘号将它分成 K + 1 K+1 K+1 个部分,找出一种分法,使得这 K + 1 K+1 K+1 个部分的乘积能够为最大。

同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:

有一个数字串: 312 312 312,当 N = 3 , K = 1 N=3,K=1 N=3,K=1 时会有以下两种分法:
1. 3 × 12 = 36 3 \times 12=36 3×12=36
2. 32 × 2 = 62 32 \times 2=62 32×2=62
这时,符合题目要求的结果是: 31 × 2 = 62 31 \times 2=62 31×2=62

现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。

输入格式

程序的输入共有两行:
第一行共有 2 2 2 个自然数 N , K N,K N,K 6 ≤ N ≤ 40 , 1 ≤ K ≤ 6 6 \le N \le 40,1 \le K \le 6 6N40,1K6
第二行是一个长度为 N N N 的数字串。

输出格式

结果显示在屏幕上,相对于输入,应输出所求得的最大乘积(一个自然数)。

输入输出样例

输入 #1

4 2
1231

输出 #1

62

2.解题思路

主要思路:动态规划。

  • 步骤一:定义动态规划数组 d p dp dp
    由于最大乘积与乘号放置的位置相关,则定义二维数组 d p [ i ] [ j ] dp[i][j] dp[i][j],表示在数字串的第 i i i 个数字后放置第 j j j 个乘号后该乘号之前式子乘积的最大值。
  • 步骤二:定义状态转移方程
    根据 d p dp dp 的定义,显然 d p [ i ] [ j ] dp[i][j] dp[i][j] 的值与 d p [ x ] [ j − 1 ] dp[x][j-1] dp[x][j1] 有关,其中 x x x 的范围应为 j − 1 ≤ x ≤ i − 1 j-1 \le x \le i-1 j1xi1,即第 j − 1 j-1 j1 个乘号能放置的位置为数字串的第 j − 1 j-1 j1 个数字后到第 i − 1 i-1 i1 个数字后,则状态转移方程为: d p [ i ] [ j ] = max ⁡ j − 1 ≤ x ≤ i − 1 { d p [ x ] [ j − 1 ] × v a l u e [ x , i − 1 ] } dp[i][j]=\max_{j-1 \le x \le i-1} \{ dp[x][j-1] \times value[x,i-1]\} dp[i][j]=j1xi1max{dp[x][j1]×value[x,i1]}其中, v a l u e [ x , i − 1 ] value[x,i-1] value[x,i1] 表示数字串第 x x x 个数字到第 i − 1 i-1 i1 个数字。
    根据状态转移方程,最终结果应为 max ⁡ K ≤ x ≤ N − 1 { d p [ x ] [ K ] × v a l u e [ x + 1 , N ] } \max_{K \le x \le N-1}\{dp[x][K] \times value[x+1,N]\} KxN1max{dp[x][K]×value[x+1,N]}
  • 步骤三:设置初始值
    由于状态转移方程中存在乘法,令 d p [ 0 ] [ j ] = d p [ i ] [ 0 ] = 1 dp[0][j]=dp[i][0]=1 dp[0][j]=dp[i][0]=1,这样可以避免状态转移方程的结果均为 0 0 0,且题目要求最大乘积,即使动态规划数组中存在 0 0 0,也应该设为 1 1 1,否则之后的结果将均为 0 0 0

3.代码

import java.math.BigInteger;
import java.util.Scanner;

/**
 * @author xiaoyaosheny
 * @discription 洛谷P1018 [NOIP2000 提高组] 乘积最大
 * @date 2021/7/30
 */
public class Main {

    /**
     * 程序入口
     * @param args 输入参数
     */
    public static void main(String[] args) {
        // 获取输入
        Scanner scanner = new Scanner(System.in);
        int N = scanner.nextInt();
        int K = scanner.nextInt();
        String value = scanner.next();
        BigInteger[][] dp = new BigInteger[N][K + 1];
        for (int i = 0; i < N; i++) dp[i][0] = new BigInteger("1");
        for (int i = 0; i < K + 1; i++) dp[0][i] = new BigInteger("1");
        for (int i = 1; i < N; i++) {
            for (int j = 1; j < K + 1; j++) {
                BigInteger max = new BigInteger("0");
                for (int k = j - 1; k <= i - 1; k++) {
                    BigInteger number = new BigInteger(value.substring(k, i));
                    max = max.max(dp[k][j - 1].multiply(number));
                }
                dp[i][j] = max;
            }
        }
        BigInteger result = new BigInteger("0");
        for (int i = K; i <= N - 1; i++) {
            result = result.max(dp[i][K].multiply(new BigInteger(value.substring(i, N))));
        }
        // 输出结果
        System.out.println(result);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值