C++代码使用 gperftools 工具进行性能分析

前言

一直想用 gperftools 做一下性能方面的尝试,之前一直忙着开发,目前已经到了后期,忙里抽闲亲自操作一遍,从安装到分析做个简单的记录,以便后续拿来直接用。

gperftools 是什么

gperftools 是Google开发的用来进行代码性能分析工具,其实他是一系列高性能多线程 malloc() 实现的集合,同时添加了一些精巧的性能分析工具。

gperftools

使用gperftools工具可以通过采样的方式生成上面这种图形化的代码性能分析结果,便于我们分析程序性能瓶颈。

使用方法

C++程序按照代码插桩的方式引入了gperftools工具,不过这个工具需要单独安装,为了生成图形化的分析结果,还需要安装一些依赖库,下面简述以下使用功能步骤。

安装工具

  1. 安装编译所需基础软件

    sudo apt install autoconf automake libtool
    
  2. 安装graphviz,用于图形化显示分析结果

    sudo apt install graphviz
    
  3. 安装libunwind, 这个库提供了可用于分析程序调用栈的 API

    cd /tmp
    wget https://github.com/libunwind/libunwind/releases/download/v1.6.2/libunwind-1.6.2.tar.gz
    tar -zxvf libunwind-1.6.2.tar.gz
    cd libunwind-1.6.2
    ./configure
    make -j4
    sudo make install
    cd /tmp
    rm -rf libunwind-1.6.2.tar.gz libunwind-1.6.2
    
  4. 安装gperftools

    cd /tmp
    wget https://github.com/gperftools/gperftools/releases/download/gperftools-2.10/gperftools-2.10.tar.gz
    tar -zxvf gperftools-2.10.tar.gz
    cd gperftools-2.10
    ./configure
    make -j4
    sudo make install
    cd ~
    rm -rf gperftools-2.10.tar.gz gperftools-2.10
    
  5. 刷新动态装入程序所需的链接和缓存文件

    sudo ldconfig
    

代码插桩引入工具

代码修改

主要在源程序中引入头文件,并且在待测试逻辑前后添加启动分析和结束分析的语句就行了,对于服务类程序,因为要一直运行,可以通过kill信号通知来开启和关闭性能分析。

关键代码

	#include <gperftools/profiler.h> // 引入头文件
	...
	ProfilerStart("cpp_demo.prof");  // 启动分析
	...
	ProfilerStop();                  // 结束分析
	...

完整示例

	#include <iostream>
	#include <gperftools/profiler.h>
	
	static void sig(int sig) // kill -10 pid to trigger
	{
	    static bool b = false;
	    if (!b)
	        ProfilerStart("cpp_demo.prof");
	    else
	        ProfilerStop();
	
	    b= !b;
	}
	
	int main(int argc, char* argv[])
	{
	    signal(SIGUSR1, sig);
	
	    while (true)
	    {
	        std::this_thread::sleep_for(std::chrono::milliseconds(1));
	        //..
	        std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(
	                std::chrono::system_clock::now().time_since_epoch()).count() << std::endl;
	    }
	
	    return 0;
	}

编译链接

编译时我们需要将 profiler 库和 libunwind 库链接到可执行程序,如果使用 cmake来构建,那么 CMakeLists 文件中的语句为:

	target_link_libraries(${PROJECT_NAME} profiler unwind)

启动分析程序

  1. 正常启动游戏服务器,通过ps命令查找到要分析的进程id,比如查找到demoserver的进程是 7217

    $ ps -ef | grep demoserver
    demo        7217       1 22 21:51 ?        00:00:18 ./demoserver-d
    
  2. 通过kill命令传递自定义信号10的方式启动和关闭分析程序,第一次运行命令是启动,第二次运行相同的命令是关闭,两次命令之间是分析的时间段

    $ kill -10 7217
    
  3. 关闭分析程序之后,会在可执行程序所在目录生成 cpp_demo.porf 文件,可以使用下面命令将结果图形化

    $ pprof --pdf demoserver cpp_demo.prof > demoserver.pdf
    Using local file demoserver.
    Using local file cpp_demo.prof.
    Dropping nodes with <= 1 samples; edges with <= 0 abs(samples)
    
  4. 最终生成的 demoserver.pdf 文件就是我们要用的分析结果,如文章开头所示。

数据分析

上面提到了生成pdf图,其实可以生成txt文本的,只要修改生成选项就可以,比如像这样:

# pprof --text demoserver cpp_demo.prof
Using local file demoserver.
Using local file cpp_demo.prof.
Total: 13 samples
       3  21.4%  21.4%        3  21.4% SpinLock::Unlock (inline)
       3  21.4%  42.9%        3  21.4% __GI_madvise
       2  14.3%  57.1%        2  14.3% SpinLock::Lock (inline)
       1   7.1%  64.3%        1   7.1% TCMalloc_PageMap2::get (inline)
       ...

上述文本数据每行包含6列数据,依次为:

  1. 分析样本数量(不包含其他函数调用)
  2. 分析样本百分比(不包含其他函数调用)
  3. 目前为止的分析样本百分比(不包含其他函数调用)
  4. 分析样本数量(包含其他函数调用)
  5. 分析样本百分比(包含其他函数调用)
  6. 函数名(或者类名+方法名)

样本数量相当于消耗的CPU时间,整个函数消耗的CPU时间相当于包括函数内部其他函数调用所消耗的CPU时间,如果是分析最上面的pdf图,每个节点代表一个函数,包含2~3行数据:

  1. 函数名(或者类名+方法名)
  2. 不包含内部函数调用的样本数 (百分比)
  3. of 包含内部函数调用的样本数 (百分比) #如果没有内部调用函数则不显示

总结

  • gperftools 是可以通过采样的方式进行代码性能分析工具,可生成图形化结果便于我们分析程序性能瓶颈
  • 待分析程序中引入gperftools非常方便,但是需要单独安装这个工具
  • 程序引入时只需要添加头文件,在目标位置插入 ProfilerStart("cpp_demo.prof");ProfilerStop(); 语句即可
  • 对于服务类程序通常不会直接结束,可以通过 kill 命令传递信号的方式来启动和关闭分析程序
==>> 反爬链接,请勿点击,原地爆炸,概不负责!<<==

可能终于有一天 刚好遇见爱情
可能永远在路上 有人奋斗前行
可能一切的可能 相信才有可能
可能拥有过梦想 才能叫做青春

google-perftools 简介 google-perftools 是一款针对 C/C++ 程序的性能分析工具,它是一个遵守 BSD 协议的开源项目。使用工具可以对 CPU 时间片、内存等系统资源的分配和使用进行分析,本文将重点介绍如何进行 CPU 时间片的剖析。 google-perftools 对一个程序的 CPU 性能剖析包括以下几个步骤。 1. 编译目标程序,加入对 google-perftools 库的依赖。 2. 运行目标程序,并用某种方式启动 / 终止剖析函数并产生剖析结果。 3. 运行剖结果转换工具,将不可读的结果数据转化成某种格式的文档(例如 pdf,txt,gv 等)。 安装 您可以在 google-perftools 的网站 (http://code.google.com/p/google-perftools/downloads/list) 上下载最新版的安装包。为完成步骤 3 的工作,您还需要一个将剖析结果转化为程序员可读文档的工具,例如 gv(http://www.gnu.org/software/gv/)。 编译与运行 您需要在原有的编译选项中加入对 libprofiler.so 的引用,这样在目标程序运行时会加载工具的动态库。例如本例中作者的系统中,libprofiler.so 安装在"/usr/lib"目录下,所以需要在 makefile 文件中的编译选项加入“-L/usr/lib -lprofiler”。 google-perftools 需要在目标代码的开始和结尾点分别调用剖析模块的启动和终止函数,这样在目标程序运行时就可以对这段时间内程序实际占用的 CPU 时间片进行统计和分析。工具的启动和终止可以采用以下两种方式。 a. 使用调试工具 gdb 在程序中手动运行性能工具的启动 / 终止函数。 gdb 是 Linux 上广泛使用的调试工具,它提供了强大的命令行功能,使我们可以在程序运行时插入断点并在断点处执行其他函数。具体的文档请参照 http://www.gnu.org/software/gdb/,本文中将只对用到的几个基本功能进行简单介绍。使用以下几个功能就可以满足我们性能调试的基本需求,具体使用请参见下文示例。 命令 功能 ctrl+c 暂停程序的运行 c 继续程序的运行 b 添加函数断点(参数可以是源代码中的行号或者一个函数名) p 打印某个量的值或者执行一个函数调用 b. 在目标代码中直接加入性能工具函数的调用,该方法就是在程序代码中直接加入调试函数的调用。 两种方式都需要对目标程序重新编译,加入对性能工具的库依赖。对于前者,他的好处是使用比较灵活,但工具的启动和终止依赖于程序员的手动操作,常常需要一些暂停函数(比如休眠 sleep)的支持才能达到控制程序的目的,因此精度可能受到影响。对于后者,它需要对目标代码的进行修改,需要处理函数声明等问题,但得到的结果精度较高,缺点是每次重新设置启动点都需要重新编译,灵活度不高,读者可以根据自己的实际需求采用有效的方式。 示例详解 该程序是一个简单的例子,文中有两处耗时的无用操作,并且二者间有一定的调用关系。 清单 1. 示例程序 void consumeSomeCPUTime1(int input){ int i = 0; input++; while(i++ < 10000){ i--; i++; i--; i++; } }; void consumeSomeCPUTime2(int input){ input++; consumeSomeCPUTime1(input); int i = 0; while(i++ < 10000){ i--; i++; i--; i++; } }; int stupidComputing(int a, int b){ int i = 0; while( i++ < 10000){ consumeSomeCPUTime1(i); } int j = 0; while(j++ < 5000){ consumeSomeCPUTime2(j); } return a+b; }; int smartComputing(int a, int b){ return a+b; }; void main(){ int i = 0; printf("reached the start point of performance bottle neck\n"); sleep(5); //ProfilerStart("CPUProfile"); while( i++ MyProfile.pdf 转换后产生的结果文档如下中的数字和框体的大小代表了的某个函数的运行时间占整个剖析时间的比例。由代码的逻辑可知,stupidComputing,stupidComputing2 都是费时操作并且它们和 consumeSomeCPUTime 存在着一定的调用关系。 1. 剖析结果 结束语 本文介绍了一个 Linux 平台上的性能剖析工具 google-perftools,并结合实例向读者展示了如何使用工具配置、使用及分析性能瓶颈。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AlbertS

常来“玩”啊~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值