自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(99)
  • 资源 (1)
  • 收藏
  • 关注

原创 机器视觉2-硬件

•优先逐行扫描:追求画质、动态场景、科学研究的必选项。•谨慎用隔行扫描:仅限老旧系统改造或极低成本场景,需权衡画质损失风险。•注意匹配其他参数:扫描方式需与分辨率、帧率、传感器类型(CMOS/CCD)协同设计。面阵工业相机像元深度解析像元深度(Pixel Depth)是面阵工业相机的核心参数之一,决定了每个像素的灰度分辨率与图像细节表达能力。1. 定义与基本特性•概念像元深度指每个像素的位数(Bit),即灰度值的量化等级。例如:•8bit:256级灰阶(0代表全暗,255代表全亮)。•。

2025-04-03 01:12:10 299

原创 机器视觉1-入门

HALCON是德国MVtec公司开发的一套完善的标准的机器视觉算法包(商业用途),在欧洲以及日本的工业界已经是公认具有最佳效能的Machine Vision软件,HALCON支持Windows,Linux和Mac OS X操作环境;编程接口支持 c,c++,cpp.net,delphi,c#,vb.net等编程语言;最新版本为Halcon13。

2025-04-01 23:31:54 382

原创 机器学习12-视觉识别任务

选择一个固定大小的窗口(通常是正方形或矩形),从图像的左上角开始,按照一定的步长(通常是像素数)在图像上滑动。

2025-03-07 00:06:20 1027

原创 3D手眼标定转换详细实施步骤及原理概述

手眼标定的核心目标是求解传感器(如相机)与机械臂之间的刚性变换矩阵,即确定两者的相对位置和姿态。Eye-in-Hand(眼在手上)相机安装在机械臂末端,标定相机到末端的变换矩阵 ( X )。方程形式:( A X = X B )。Eye-to-Hand(眼在手外)相机固定在工作空间外,标定相机到机械臂基座的变换矩阵 ( Y )。方程形式:( A X = Y B )。坐标系定义基座坐标系(Base):机械臂的固定参考系。末端坐标系(Tool):机械臂末端执行器的坐标系。

2025-03-04 23:44:07 1106

原创 机器学习11-经典网络解析

用于提取图像特征的卷积层以及用于分类的全连接层是同时学习的;卷积层与全连接层在学习过程中会相互影响、相互促进重要技巧:Dropout策略防止过拟合;使用加入动量的随机梯度下降算法,加速收敛;验证集损失不下降时,手动降低10倍的学习率;采用样本增强策略增加训练样本数量,防止过拟合集成多个模型,进一步提高精度Inception结构最初在2014年被提出,并在ImageNet图像分类挑战赛上取得了显著成果。

2025-02-28 17:55:11 759

原创 机器学习10-卷积和卷积核3

ri ,哪种边缘信息的统计响应均值越高那么图中这个边缘种类就越多,记录这多个基元的响应图均值就记录了这张图的边缘信息。基于卷积核组的纹理表示方法:利用卷积核组提取图像中的纹理基,利用基元的统计信息来表示图像中的纹理。如果使用卷积的方式,将图像卷积成几个特征,然后再将特征作为连接网络的输入层,可以大大减少计算量。不同的池化方法在不同的场景下有不同的应用效果。卷积神经网络中,卷积核可以按照指定的间隔进行卷积操作,这个间隔就是卷积步长。3.利用特征响应图的某种统计信息来表示图像中的纹理。卷积核方向 (6个角度)

2025-02-11 23:46:05 1133

原创 机器学习9-卷积和卷积核2

这个公式提供了一种简单有效的方法来近似计算图像在 (x) 方向上的偏导数,通过相邻像素值的差来估计像素值的变化率,常用于图像处理中的各种操作。1._用高斯一阶偏导核卷积图像2. 计算每个点的梯度幅值和方向将宽的“边缘”细化至单个像素宽度定义两个阈值:低和高使用高阈值开始边缘曲线,使用低阀值继续边缘曲线。

2025-02-06 23:31:22 826

原创 机器学习8-卷积和卷积核1

卷积是数学中的一种运算,广泛应用于信号处理、图像处理和机器学习等领域。在机器学习中,卷积通常指卷积神经网络(CNN)中的卷积操作。卷积操作可以表示为:f∗gt∫−∞∞fτgt−τdτf∗gt∫−∞∞​fτgt−τdτ在离散情况下,卷积操作可以表示为:f∗gn∑m−∞∞fmgn−mf∗gn∑m−∞∞​fmgn−m。

2025-02-05 23:37:24 1028

原创 机器学习7-全连接神经网络3-过拟合与超参数

大数据集有助于减少过拟合的风险,因为模型有更多的机会学习到数据中的真实模式,而不是噪声。在这种情况下,正则化可以作为一种减轻计算负担的策略,同时保持模型的性能。总之,获取更多的训练数据和正则化是提高模型性能的两种有效策略。使用Dropout后,这个向量会有几个随机的元素变成:[0,0.5,1.3, 0, 1.1]。正则化可能会限制模型的性能,尤其是在数据量充足且模型复杂度适当的情况下。3.选择性能最优的模型所采用的那组值作为最终的超参数的值。3.选择性能最优的模型所采用的那组值作为最终的超参数的值。

2025-01-31 18:24:59 1023

原创 机器学习6-全连接神经网络2

好的初始化方法可以防止前向传播过程中的信息消失,也可以解决反向传递过程中的梯度消失。激活函数选择双曲正切或者Sigmoid时,建议使用Xaizer初始化方法;激活函数选择ReLU或Leakly ReLU时,推荐使用He初始化方法。

2025-01-31 14:51:24 1284

原创 工业视觉5-工业视觉选型

工业视觉选型是一个综合性的过程,需要充分考虑检测任务的类型、工作环境、成本预算、软件兼容性等多方面因素。相机作为工业视觉系统的核心组件之一,其选型尤为关键。通过对任务的详细分析和对相机各项参数的了解,结合实际应用场景的需求,可以选择出最适合的工业相机,从而构建一个高效、稳定、可靠的工业视觉系统,为企业的生产制造和质量控制提供有力的支持。

2025-01-17 00:03:51 987

原创 机器视觉5-全连接神经网络

图片通过对比线性分类器和两层全连接网络,说明了权重矩阵在不同模型中的作用和意义。在线性分类器中,权重矩阵(WWW)直接与输入图像向量进行线性组合用于分类;在两层全连接网络中,(W1W_1W1​)和(W2W_2W2​)分别在不同层中进行线性变换,并通过ReLU激活函数引入非线性,最终实现对输入图像的分类。同时强调了权重矩阵可看作模板,以及模板个数的确定方式在不同模型中的差异。

2025-01-16 23:51:50 710

原创 工业视觉4-镜头选型

镜头焦距的长短决定着拍摄的成像大小,视场角大小,景深大小和画面的透视强弱。f/1.0, f/1.4,f/2.0,f/2.8,f/4.0,f/5.6,f/8.0,f/11,f/16,f/22,f/32,f/44,f/64光圈的档位设计是相邻的两档的数值相差1.4倍(2的平方根1.414的近似值)不同的接口类型主要是为了适配不同的镜头和摄像机,用户在选择时需要根据摄像机的接口类型、镜头的可用性、成像要求以及成本等因素综合考虑,确保镜头和摄像机能够正确连接并实现良好的成像效果。率不小于120万像素。

2025-01-14 00:24:17 704

原创 机器视觉4-损失函数与梯度计算

对示例样本,分类器1与分类器2的分类谁的效果更好?如何定量衡量分类器的性能?确定一个函数来衡量即损失函数超参数是在机器学习算法运行前需要人为设定的参数,它们不能通过训练数据来学习得到,而是需要通过经验、试错或特定的调参方法来确定。超参数是在机器学习算法运行前需要人为设定的参数,它们不能通过训练数据来学习得到,而是需要通过经验、试错或特定的调参方法来确定。参数优化是机器学习的核心步骤之一,它利用损发函数的输出值作为反馈信号来调整分类器参数,以提升分类器对训练样本的预测性能。

2025-01-13 23:09:50 1132

原创 工业视觉3-光源选型

通常是一个半球形的散射光源,从上方均匀地照射物体,能够提供非常柔和、无阴影的照明效果,适用于对物体进行全方位的均匀照明,常用于检测物体的整体外观、颜色等,对物体表面的反光和阴影较为敏感的场景。:光源呈扁平的环状,能够提供较为均匀的环形照明,减少物体表面的阴影,适用于各种形状的物体,尤其对于一些圆形物体或表面反光较强的物体,可以避免局部过亮或过暗的情况。与前述直接照明的低角度方式不同,散射方式的光源先经过内壁散射之后再均匀的照射到物体上,在提供均匀照明的同时,有效的消除了边缘的反射。

2025-01-13 00:16:50 723

原创 工业视觉2-相机选型

采用电荷耦合器件(CCD)作为图像传感器,具有成像质量高、噪声低、对光线敏感度高、动态范围大等特点,但功耗较大、成本相对较高、数据传输速度相对较慢。:使用互补金属氧化物半导体(CMOS)作为图像传感器,集成度高、功耗低、成本相对较低、数据传输速度快,随着技术发展其成像质量也不断提升。这些分类方式从不同的角度对工业相机进行了区分,有助于根据具体的应用需求选择合适的工业相机。CCD在图像的质量上更有优势。而常见的高速摄像头则会采用CMOS芯片。

2025-01-12 23:53:00 575

原创 机器视觉3-线性分类器

线性分类器是一种线性映射,将输入的图像特征映射为类别分数。对示例样本,分类器1与分类器2的分类谁的效果更好?如何定量衡量分类器的性能?确定一个函数来衡量即损失函数超参数是在机器学习算法运行前需要人为设定的参数,它们不能通过训练数据来学习得到,而是需要通过经验、试错或特定的调参方法来确定。超参数是在机器学习算法运行前需要人为设定的参数,它们不能通过训练数据来学习得到,而是需要通过经验、试错或特定的调参方法来确定。

2025-01-12 23:04:04 737

原创 机器视觉2-图像分类任务

定义:图像分类任务是指给定一张输入图像,通过计算机视觉算法和模型,将其自动分配到预定义的一个或多个类别标签中。例如,输入一张动物的照片,模型需要判断这张照片中的动物是猫、狗还是其他种类。其本质是从图像的像素数据中提取有意义的特征,并根据这些特征进行分类决策。应用场景安防监控:对监控摄像头拍摄的图像进行实时分类,识别出人员、车辆、动物等不同类别,以便及时发现异常情况,如非法入侵、交通违规等。例如,在机场安检区域,通过图像分类可以快速识别出旅客携带的物品类别,辅助安检人员进行安全检查。医疗影像诊断。

2025-01-09 01:48:22 755

原创 机器视觉1-概述

机器视觉是用机器代替人眼来做测量和判断。机器视觉系统是通过光学装置(如相机镜头等)获取目标物体的图像,将其转换为数字信号,然后利用计算机算法对这些数字图像进行处理,包括图像增强、特征提取、目标识别、图像分割等操作,最终实现对物体的检测、定位、测量、识别等功能,并且可以根据处理结果来控制外部设备(如机器人、自动化生产线等)的动作。例如,在工业生产线上,机器视觉系统可以快速拍摄产品的图像,判断产品是否有瑕疵,若是发现有缺陷的产品,就可以控制机械臂将其分拣出来。目标检测图像分割图像描述图像生成。

2025-01-09 01:27:45 956

原创 搭建个人网站-规划步骤

上传完成之后我们就可以关闭FTP软件了,回到宝塔面板,因为我们刚刚上传是压缩包,不能直接使用的,我们在后台找到文件管理的界面,然后找到网站对应的目录,宝塔面板的目录一般是固定的,比如我刚刚新建的网站目录就是 /www/wwwroot/v1tx.com/ ,一般宝塔面板安装时你没有修改的话就是在这个 /www/wwwroot 目录下的。宝塔面板安装完成后,我们就可以登录后台面板了,使用刚刚记录的后台地址登录(如果你是使用的阿里云或者腾讯云的话,可能会登录不上,这时候你需要在后台开启安全组8888端口)

2024-12-19 22:38:10 1003

原创 电子设计-基础3-电感与二极管

电感器(简称电感)是电子电路中一种重要的被动元件,主要用于储存磁能、滤波、振荡和阻抗匹配等方面。电感的基本原理是基于电磁感应现象,当电流通过电感器时,它会在周围产生磁场,并在电流变化时反过来产生感应电动势。电感的实质是好多圈导线绕在一个可以导磁的磁环上,具体可以参考高中的楞次定律那里标准符号电感的单位:亨(L)与电容的常用单位uF一样,电感的常用单位是uH一体成型电感属于贴片电感的一种,其结构主要包括座体和绕组本体。

2024-09-04 22:48:21 1215

原创 设计模式27-设计模式的总结

任何模式的的优点就在于它解决的变化点,它的缺点就是它要求的稳定点。如果一个模式的稳定点出现变化那这个模式不适合解决当前事务需要其他设计模式来解决。觉大多数模式都是基于第三种,通过类型指针动态的指向某个具体类型的对象,来应对变化点。手中无剑,心中无剑:看见这个设计模式,但是不理解这个设计模式。手中有剑,心中无剑:可以识别模式。手中有剑,心中有剑:作为框架开发人员为应用设计某些模式。手中无剑,心中有剑:忘掉设计模式,只遵守涉及原则。分解事务,归类事务,那些是变化的那些是不变的。编译时依赖=》运行时依赖。

2024-09-02 23:19:26 619

原创 Qt笔记-setRowCount(int rows)方法

之前手动保存这些数据,或者使用其他方法来调整表格的显示而不丢失数据。例如,你可以通过隐藏行(虽然它们仍然存在于模型中)而不是实际删除它们来模拟行数的减少。返回的值),那么超出新设定行数的那些行及其包含的所有数据确实会被丢弃。方法用于设置表格中的行数。当你调用这个方法时,如果你指定的行数(如果你需要保留这些数据以便将来可能再次使用,你应该在调用。和自定义模型来实现更复杂的行管理功能。并不直接支持隐藏行,这可能需要使用。)小于当前表格的行数(即。

2024-08-28 14:04:08 631

原创 设计模式26-解析器模式

解析器模式是一种行为设计模式,它定义了一个语言的语法表示,并实现一个解释器来处理该语言的句子。解析器模式将表达式解析为抽象语法树(AST),然后通过遍历语法树来执行或评估表达式。解析器模式的应用场合是解析器模式应用中的难点。只有满足业务规则频繁变化,且类似结构会不断重复出现。并且容易抽象为语法规则的问题,才适合使用解析器模式。使用解气模式来表示文法规则,从而可以使用。面向对象的技巧来方便的扩展文法。解析器模式比较适合简单的文法表示,对于复杂的文法表示解析模式会产生比较大的类层次结构。

2024-08-27 23:04:16 1130

原创 设计模式25-访问器模式

访问者模式(Visitor Pattern)是一种行为设计模式,它将对数据结构中的元素进行操作的功能封装到访问者对象中,使得在不改变数据结构的前提下增加新的操作变得容易。访问者模式是一种将算法与对象结构分离的设计模式,它定义了一组操作,可以在不修改对象结构的前提下为对象结构中每个元素添加新的操作。这种模式通常用于对象结构中的元素需要被不同方式处理的情况。这张图展示了访问者模式的主要组成部分:抽象访问者、具体访问者、抽象元素和具体元素。

2024-08-26 23:17:41 1122

原创 设计模式24-命令模式

在组件的构建过程中,组件行为的变化经常导致组件本身剧烈的变化。行为变化模式,将组件的行为和组件本身进行解构。从而支持组建行为的变化。实现两者之间的松耦合。行为变化模式通常指的是一类设计模式,它们允许对象在运行时根据状态或环境的变化动态地改变行为。这类模式通过将算法、职责或行为的变化封装起来,使得系统更具灵活性和可扩展性。行为变化模式通过封装行为、状态或算法的变化,使得系统更加灵活和可扩展。这类模式在解决动态变化需求、减少代码复杂性、提高系统的可维护性等方面具有重要作用。

2024-08-21 23:51:19 1090 1

原创 设计模式23-职责链

职责链模式(Chain of Responsibility Pattern)是一种行为设计模式,允许多个对象有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递请求,直到有对象处理它为止。责任链模式对应用场合在于一个请求可能有多个接受者。但是最后真正的接受者只有一个,这时候请求发送者与接受者的耦合有可能出现变化脆弱的症状。这次练的目的就是将二者进行解耦。从而更好地应对变化。

2024-08-19 23:32:42 1023

原创 设计模式22-迭代器模式

迭代器模式提供一种方法,顺序访问一个聚合对象中的各个元素,而不暴露该对象的内部表示。在 C++ 中,模板实现迭代器的方式由于性能、类型安全性、灵活性、和代码复用性等方面的优势,通常是优于使用多态性的。模板通过在编译时确定类型和生成代码,避免了运行时开销,使得迭代器更高效且灵活。但在处理需要运行时多态性或异构集合的情况下,多态性仍然是不可替代的。有些模式运用的技术机制可能会过时但是它的思想不会过时迭代抽象:访问一个聚合对象的内容,而无需暴露它的内部表示。

2024-08-15 23:03:23 822

原创 设计模式21-组合模式

数据结构模式常常有一些组件在内部具有特定的数据结构。如何让客户程序依赖这些特定的数据结构,将极大的破坏组件的复用。那么这个时候将这些特定数据结构封装在内部。在外部提供统一的接口来实现与特定数据结构无关的访问。是一种行之有效的解决方案。典型模式组合模式迭代器模式组合模式允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户端对单个对象和组合对象的使用具有一致性。组合模式通过将对象组合成树形结构来表示“部分-整体”的层次结构,使得客户端可以一致地处理单个对象和组合对象。

2024-08-14 00:16:15 1194

原创 设计模式20-备忘录模式

备忘录模式在不破坏封装性的前提下,捕获对象的内部状态,并在该对象之外保存这个状态。这样以后就可以将对象恢复到原先保存的状态。备忘录模式是一种强大的设计模式,通过封装对象的内部状态,实现了状态的保存和恢复功能。虽然它能够有效地支持撤销和恢复操作,但在实际应用中需要注意内存消耗和管理复杂性,特别是在对象状态复杂且变化频繁的场景下。备忘录模式存储原发器对象的内部状态。在需要时恢复原发器状态。备忘录模式的核心是信息隐藏,即原发器需要向外界隐藏信息保持其封装性,但同时又需要将再保存到外界。

2024-08-08 23:56:38 790

原创 设计模式19-状态模式

在组建构建过程中,某些对象的状态经常面临着变化。如何对这些变化进行有效的管理呢?同时又wage高层模块的稳定。状态变化模式为这一问题提供了一种解决方案。典型模式StateMemento状态模式允许对象在内部状态改变时改变其行为,对象看起来好像修改了它的类。状态模式通过将状态相关的行为封装在独立的状态类中,使得对象在不同状态下具有不同的行为,简化了状态转换的逻辑,并提高了系统的可维护性和可扩展性。在适当的场景下使用状态模式,可以显著改善代码的可读性和灵活性。

2024-08-06 23:57:20 961

原创 设计模式18-中介者模式

用一个中介对象来封装(封装变化)一系列的对象交互。终结者使各对象不需要显示的相互引用(编译时依赖变成运行时依赖),从而使其耦合松散也可以独立的改变他们之间的交互。–《设计模式》GOF中介者模式定义了一个中介对象,该对象封装了对象之间的交互方式,使得对象之间不再需要显式地相互引用,从而使其耦合松散,且可以独立地改变它们之间的交互。中介者模式通过引入中介者对象,将对象之间的交互逻辑集中管理,从而降低对象之间的耦合度。

2024-08-06 00:19:42 849

原创 设计模式17-适配模式

定义适配器模式将一个类的接口转换成客户希望的另一个接口。适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。目标(Target)接口:定义客户所需的接口。适配者(Adaptee)类:定义一个已经存在的接口,这个接口需要适配。适配器(Adapter)类:将适配者接口转换成目标接口,使得客户端可以通过目标接口与适配者进行通信。类适配器(Class Adapter):使用多重继承实现适配。对象适配器(Object Adapter):使用组合实现适配。

2024-07-31 23:50:40 1019

原创 电子设计-基础2-电阻电容

NTC和PTC热敏电阻在电路中有广泛的应用,主要用于温度测量、温度补偿、过流保护和浪涌电流限制等。选择合适的热敏电阻类型和设计合理的电路,可以有效提升系统的可靠性和性能。

2024-07-31 22:07:55 1156

原创 设计模式16-代理模式

为其他对象提供一种代理以控制(隔离,使用接口)对这个对象的访问。代理模式提供了一种通过代理对象控制对原始对象访问的机制,使得我们可以在不改变客户端代码的情况下,对对象的访问进行控制和增强。尽管引入代理会增加一定的性能开销和系统复杂性,但在适当的场景下使用代理模式,可以显著提高系统的灵活性和可维护性。增加一层间接层。是软件系统中对许多复杂问题的一种常见解决方法。在面向对象系统中直接使用某些对象会带来很多问题作为间接层的代理对象必须解决这一问题的常见手段。

2024-07-30 23:31:45 964

原创 设计模式15-门面模式

接口隔离原则强调将大接口拆分成更小的、更加具体的接口,以便客户端只依赖于它们实际需要的接口。上述设计模式在一定程度上体现了这一原则,通过这些模式的合理运用,可以设计出更加灵活和可维护的系统。为此系统中的一组接口提供了一个一致稳定的界面。门面模式是定义了一个高层接口,这个接口使得这一子系统更容易的使用和复用。从客户程序的角度来看,门面模式简化了一个组件系统的接口。组建内部与外部客户程序来说,达到了一种解耦的效果。内部子系统的任何变化都不会影响到门面模式接口的变化。

2024-07-30 00:57:23 1107

原创 设计模式14-享元模式

运用共享技术有效地支持大量细粒度的对象。–《设计模式》GoF定义了对象的接口,可以接受外部状态。实现Flyweight接口,并为内部状态(不变部分)进行存储。并不是所有的Flyweight子类都需要被共享,非共享Flyweight类可以实现Flyweight接口,但它们不是共享的。创建并管理Flyweight对象,确保合理地共享Flyweight。面对对象很好的解决了抽象性的问题,但是作为一个运行在机器中的程序实体我们需要考虑对象的代价问题。

2024-07-25 23:21:36 1158

原创 设计模式13-单件模式

面向对象很好的解决了抽象的问题,但是必不可免的要付出一定的代价(类空间的重复分配等)。对于通常情况来讲,面向对象的成本大多都可以忽略不计。但某些情况面向对象所在的成本必须谨慎处理。设计模式中的对象性能模式是指那些专注于提高系统性能、优化资源使用和管理的设计模式。这些模式通过有效的对象创建、共享、复用和管理策略,减少内存占用、提高运行效率,从而提升整体系统性能。保证一个类仅有一个实力,并提供一个该实例的全局访问点。线程不安全版本:简单但在多线程环境下不安全。线程安全版本(锁代价高)

2024-07-24 00:07:36 1068

原创 设计模式12-构建器

构建器模式是一种强大的设计模式,通过将对象的构建过程分离出来,使得复杂对象的创建变得更加灵活和可维护。在C++中,构建器模式可以通过定义一个产品类、一个抽象构建器类、一个具体构建器类以及一个指挥者类来实现。这种模式广泛应用于需要创建复杂对象的场景中,例如GUI库中的窗口构建、报表生成、游戏中的复杂角色创建等。

2024-07-23 00:33:29 1169

原创 电子设计-入门教程-基础1

以使用为主的基础知识。

2024-07-19 00:44:17 1957

机器学习的数学理论基础以及python代码实现

机器学习的数学理论基础以及python代码实现

2024-05-16

计算机组成与设计++硬件软件接口+原书第5版

详细介绍了计算机组成以及计算机与外部接口的主要原理

2018-10-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除