数论初步之欧几里德

这里一定要注意,还有一种情况,当然这中情况以前没有接触到,

就是任何数和0的最大公约数,应该是那个数本身的,原因就是,0除以任何数都可以整除.

任何一个数都是零的约数,张见识了,

原来gcd应该是那样写的

忘了还是要再加一个点就是gcd的时间复杂度O(ln n^3 );

看下面的代码:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>

using namespace std;

/*
辗转相除法-即欧几里德算法
*/ 

int gcd(int a, int b)
{
//	return a % b == 0 ? b : gcd(b, a % b);//晕死了,,这是错误的,这样是处理不了 b == 0的. 
	return b == 0 ? a : gcd(b, a % b); 
}

int main()
{
	int a, b;
	cout << "Input the two numbers : " << endl;
	while (cin >> a >> b)
	{
		int ans = gcd(a,b);
		cout << "_gcd(a, b) : " << ans << endl;
		cout << "_lcm(a, b) : " <<  a / ans * b << endl;
		cout << "Input the two numbers : " << endl;
	}
	system("pause");
	return 0;
}
	


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值