BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 1007  Solved: 415
[ Submit][ Status]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。



Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



Sample Output


14

3



HINT



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

 
mobius反演,与“能量采集”不同的是,这道题如果不加一点优化的话,是一定会TLE的。然后考虑优化:
  ans+=segma(mu[i]*(a/i)*(b/i))
由于对于一个给定的区间[l,r], a/l=a/r   b/l=b/r,可以对对这个区间统一处理。
  ans+=segma((sum[r]-sum[l-1])*(a/l)*(n/l))
所以令l=i,这里要记一下
  a/(a/i)==r+1
所以剩下的就可以随便搞一下了。
 
 
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
#ifdef unix
#define LL "%lld"
#else 
#define LL "%I64d"
#endif
typedef long long qword;
#define MAXN 100000
int prime[MAXN/3];
bool pflag[MAXN];
int topp=-1;
int mu[MAXN];
int sum[MAXN];
void init()
{
        int i,j;
        mu[1]=1;
        for (i=2;i<MAXN;i++)
        {
                if (!pflag[i])
                {
                        prime[++topp]=i;
                        mu[i]=-1;
                }
                for (j=0;j<=topp&&prime[j]*i<MAXN;j++)
                {
                        pflag[i*prime[j]]=true;
                        mu[i*prime[j]]=-mu[i];
                        if (i%prime[j]==0)
                        {
                                mu[i*prime[j]]=0;
                        }
                }
        }
}
qword solve(int a,int b)
{
        int l=min(a,b);
        int i,j;
        int ls,lt;
        qword ret=0;
        for (i=1,ls=0;i<=l;i=ls+1)
        {
                ls=min((a/(a/i)),(b/(b/i)));
                ret+=(qword) (sum[ls]-sum[i-1])*(a/i)*(b/i);
        }
        return ret;
}
int main()
{
        int nn;
        freopen("input.txt","r",stdin);
        init();
        scanf("%d",&nn);
        int a,b,c,d,n;
        qword ans;
        int i,j;
        for (i=0;i<MAXN;i++)sum[i]=sum[i-1]+mu[i];
/*        for (i=1;i<10;i++)
        {
                for (j=0;j<10;j++)
                {
                        cout<<i<<" "<<j<<" "<<solve(i,j)<<endl;
                }
        }
*/
    //    cout<<solve(2,3);
    //    return 0;
        while (nn--)
        {
                scanf("%d%d%d%d%d",&a,&b,&c,&d,&n);
                ans=solve((a-1)/n,(c-1)/n)-solve((a-1)/n,d/n)-solve(b/n,(c-1)/n)+solve(b/n,d/n);
                printf(LL "\n",ans);
        }
}

 

转载于:https://www.cnblogs.com/mhy12345/p/3791822.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值