對比:莫比烏斯反演與歐拉函數

最近題讓我非常困惑,貌似我現在已經完全分不清楚哪些題用莫比烏斯反演,哪些用歐拉函數。

下面簡單總結一下,莫比烏斯反演處理的是

  1. 求segma(gcd(x,y)) 1<=x<=n,1<=y<=m (見《能量項鍊》)
  2. gcd(x,y) = k   1<=x<=n 1<=y<=m  求x,y對數 (見《bzoj 2301  problem b》) 
莫比烏斯反演原來是解決以上問題2的,大體思路是
  設F(a,b,k)表示1<=x<=a,1<=y<=b gcd(x,y)|k 對數。
  segma(gcd(x,y))== segma(mu[k]*F(n,m,k))
  至此事件複雜度O(n)
  由於F(n,m,k)=(n/k)*(m/k),具有一定區間的一致性,於是可以優化爲O(sqrt(n))
  在此過程中,需要統計mu[]的前綴和。
而對於問題1,如果枚舉d=gcd(x,y)  O(n*sqrt(n))
  可以按上文方法,批量d相同的區間即可在將n優化爲sqrt(n)。

歐拉函數題目:

  1. segma(gcd(i,n)) (見《bzoj 2705》)
  2. gcd(x,y) = 1,1<=x,y<=n,多重詢問 (見《bzoj 2818》)

歐拉函數的轉換十分靈活,這裏就不一一敘述了。

转载于:https://www.cnblogs.com/mhy12345/p/4007334.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值