SiliconCloud x FastGPT:让20万用户打造专属AI知识库

ddab590b1b6c3671882399a89d93a95f.png

FastGPT(https://fastgpt.cn/)是由环界云团队开发的基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景。FastGPT 已在 Github 获得 19.4k 个 star。 

硅基流动的 SiliconCloud(https://cloud.siliconflow.cn/)是一个大模型云服务平台,并拥有自己的加速引擎。SiliconCloud 能帮助用户低成本、快速地进行开源模型的测试和使用。实际体验下来,他们家模型的速度和稳定性都非常不错,并且种类丰富,覆盖语言、向量、重排序、TTS、STT、绘图、视频生成等数十款模型,可以满足 FastGPT 中所有模型需求。 

本文是由 FastGPT 团队编写的教程,将介绍完全使用 SiliconCloud 模型在本地开发部署 FastGPT 的方案。

1 获取 SiliconCloud 平台 API Key

  1. 打开 SiliconCloud 官网,并注册/登录账号。

  2. 完成注册后,打开 API 密钥 ,创建新的 API Key,点击密钥进行复制,以备后用。


d14758bda9e6673c10138ce15ad201e0.png


2 修改 FastGPT 环境变量

OPENAI_BASE_URL=https://api.siliconflow.cn/v1
# 填写 SiliconCloud 控制台提供的 Api Key
CHAT_API_KEY=sk-xxxxxx

FastGPT开发与部署文档:https://doc.fastgpt.cn

3 修改 FastGPT 配置文件

选取 SiliconCloud 中的模型作为 FastGPT 配置。这里配置了 Qwen2.5 72b 的纯语言和视觉模型;选择 bge-m3 作为向量模型;选择 bge-reranker-v2-m3 作为重排模型。选择 fish-speech-1.5 作为语音模型;选择 SenseVoiceSmall 作为语音输入模型。
  

注意:ReRank 模型仍需配置一次 API Key。 

{
    "llmModels": [
    {
      "provider": "Other", // 模型提供商,主要用于分类展示,目前已经内置提供商包括:https://github.com/labring/FastGPT/blob/main/packages/global/core/ai/provider.ts, 可 pr 提供新的提供商,或直接填写 Other
      "model": "Qwen/Qwen2.5-72B-Instruct", // 模型名(对应OneAPI中渠道的模型名)
      "name": "Qwen2.5-72B-Instruct", // 模型别名
      "maxContext": 32000, // 最大上下文
      "maxResponse": 4000, // 最大回复
      "quoteMaxToken": 30000, // 最大引用内容
      "maxTemperature": 1, // 最大温度
      "charsPointsPrice": 0, // n积分/1k token(商业版)
      "censor": false, // 是否开启敏感校验(商业版)
      "vision": false, // 是否支持图片输入
      "datasetProcess": true, // 是否设置为文本理解模型(QA),务必保证至少有一个为true,否则知识库会报错
      "usedInClassify": true, // 是否用于问题分类(务必保证至少有一个为true)
      "usedInExtractFields": true, // 是否用于内容提取(务必保证至少有一个为true)
      "usedInToolCall": true, // 是否用于工具调用(务必保证至少有一个为true)
      "usedInQueryExtension": true, // 是否用于问题优化(务必保证至少有一个为true)
      "toolChoice": true, // 是否支持工具选择(分类,内容提取,工具调用会用到。)
      "functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice,如果为false,则使用 functionCall,如果仍为 false,则使用提示词模式)
      "customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型
      "customExtractPrompt": "", // 自定义内容提取提示词
      "defaultSystemChatPrompt": "", // 对话默认携带的系统提示词
      "defaultConfig": {}, // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
      "fieldMap": {} // 字段映射(o1 模型需要把 max_tokens 映射为 max_completion_tokens)
    },
    {
      "provider": "Other",
      "model": "Qwen/Qwen2-VL-72B-Instruct",
      "name": "Qwen2-VL-72B-Instruct",
      "maxContext": 32000,
      "maxResponse": 4000,
      "quoteMaxToken": 30000,
      "maxTemperature": 1,
      "charsPointsPrice": 0,
      "censor": false,
      "vision": true,
      "datasetProcess": false,
      "usedInClassify": false,
      "usedInExtractFields": false,
      "usedInToolCall": false,
      "usedInQueryExtension": false,
      "toolChoice": false,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {}
    }
  ],
  "vectorModels": [
    {
      "provider": "Other",
      "model": "Pro/BAAI/bge-m3",
      "name": "Pro/BAAI/bge-m3",
      "charsPointsPrice": 0,
      "defaultToken": 512,
      "maxToken": 5000,
      "weight": 100
    }
  ],
  "reRankModels": [
    {
        "model": "BAAI/bge-reranker-v2-m3", // 这里的model需要对应 siliconflow 的模型名
        "name": "BAAI/bge-reranker-v2-m3",
        "requestUrl": "https://api.siliconflow.cn/v1/rerank",
        "requestAuth": "siliconflow 上申请的 key"
    }
  ],
  "audioSpeechModels": [
    {
        "model": "fishaudio/fish-speech-1.5",
        "name": "fish-speech-1.5",
        "voices": [
            {
                "label": "fish-alex",
                "value": "fishaudio/fish-speech-1.5:alex",
                "bufferId": "fish-alex"
            },
            {
                "label": "fish-anna",
                "value": "fishaudio/fish-speech-1.5:anna",
                "bufferId": "fish-anna"
            },
            {
                "label": "fish-bella",
                "value": "fishaudio/fish-speech-1.5:bella",
                "bufferId": "fish-bella"
            },
            {
                "label": "fish-benjamin",
                "value": "fishaudio/fish-speech-1.5:benjamin",
                "bufferId": "fish-benjamin"
            },
            {
                "label": "fish-charles",
                "value": "fishaudio/fish-speech-1.5:charles",
                "bufferId": "fish-charles"
            },
            {
                "label": "fish-claire",
                "value": "fishaudio/fish-speech-1.5:claire",
                "bufferId": "fish-claire"
            },
            {
                "label": "fish-david",
                "value": "fishaudio/fish-speech-1.5:david",
                "bufferId": "fish-david"
            },
            {
                "label": "fish-diana",
                "value": "fishaudio/fish-speech-1.5:diana",
                "bufferId": "fish-diana"
            }
        ]
    }
  ],
  "whisperModel": {
    "model": "FunAudioLLM/SenseVoiceSmall",
    "name": "SenseVoiceSmall",
    "charsPointsPrice": 0
  }
}

4 重启 FastGPT

5 体验测试

测试对话和图片识别

随便新建一个简易应用,选择对应模型,并开启图片上传后进行测试。
 

b523693dd85ada85434c014ade8f1970.png


可以看到,72B 的模型,性能非常快,这要是本地没几个 4090,不说配置环境,输出恐怕都要 30s 了。 

测试知识库导入和知识库问答

新建一个知识库(由于只配置了一个向量模型,页面上不会展示向量模型选择)。

441e6c22da61c196ab5169a3bccdd12a.png


导入本地文件,直接选择文件,然后一路下一步即可。79 个索引,大概花了 20s 的时间就完成了。现在我们去测试一下知识库问答。 
 

首先回到我们刚创建的应用,选择知识库,调整一下参数后即可开始对话。

282a9f19f04d4348ea22a40e7272783e.png

对话完成后,点击底部的引用,可以查看引用详情,同时可以看到具体的检索和重排得分。

c56f1268205e2545c661ac5a1c1c336d.png

测试语音播放

继续在刚刚的应用中,左侧配置中找到语音播放,点击后可以从弹窗中选择语音模型,并进行试听。

fd068c97c889ac29200c0a865707494a.png


测试语言输入

继续在刚刚的应用中的左侧配置中找到语音输入,点击后可以从弹窗中开启语言输入。
 

93d7d85f410dd83cecafb27f8ac02fa7.png


开启后,对话输入框中,会增加一个话筒的图标,点击可进行语音输入。  

总结 

如果你想快速的体验开源模型或者快速的使用 FastGPT,不想在不同服务商申请各类 API Key,那么可以选择 SiliconCloud 的模型进行快速体验。 

原文:https://doc.fastgpt.cn/docs/development/modelconfig/siliconcloud/

3287acc4e44c4d3d766dc719e7d09fb5.png

加入 FastGPT 开源社区

让 AI 更懂你的知识

🏠官网链接

https://fastgpt.cn

🐙GitHub 地址

https://github.com/labring/FastGPT

📑访问 Sealos 文档

https://doc.fastgpt.cn/

🏘️逛逛论坛

https://forum.laf.run/

往期推荐

70 个群都来问我的 AI 日报,是这么做的。

2024-11-14

f465f0365f8a262cbd4b8dbc94b966f0.jpeg

扔掉 Google 翻译!这个超强 AI 翻译工作流才是你的最佳选择

2024-10-30

9d291257da58b02eedc5765d2d91c825.jpeg

AI 居然说我是牛马,还画出了我牛马的一生,我绷不住了...

2024-10-25

921cd52d7bf7f6587f3eccca0ba9ce73.jpeg

别再手动处理数据了!FastGPT 这个新功能让你提前下班

2024-11-05

7d222b3d63b5c567003c2a23978c4c41.jpeg

不用写一行代码,使用 FastGPT 搭建 GitHub Issues 自动总结机器人

2024-10-21

7b68186fd53844c384c1866ea41500a0.jpeg

关于 FastGPT

FastGPT 是一款基于 LLM 大模型的开源 AI 知识库构建平台。提供了开箱即用的数据处理、模型调用、RAG 检索、可视化 AI 工作流编排等能力,帮助您轻松构建复杂的 AI 应用。

5d979ec55facf5a63230d269e1f74519.png

fastgpt知识库是一个专为快速获取高质量信息而设计的知识管理系统。它采用了先进的自然语言处理技术、机器学习算法以及搜索引擎优化策略,旨在提供快速、准确、全面的信息查询服务。 fastgpt知识库的特点包括: 1. **高效检索**:通过深度学习模型优化搜索算法,能够迅速从海量数据中定位到最相关的结果,极大地提高了查询效率。 2. **智能推荐**:基于用户历史查询记录和个人偏好,系统能自动推荐可能感兴趣的内容,提升用户体验。 3. **内容丰富**:包含广泛领域的专业资料、新闻资讯、学术论文等,无论是学习新知识还是解决特定问题都能找到所需资源。 4. **更新及时**:不断引入最新的研究成果和技术进展,保证信息的新鲜度和可靠性。 5. **隐私保护**:注重用户隐私安全,在提供便捷服务的同时,采取措施保护用户的个人信息不被泄露。 6. **交互友好**:界面简洁明了,操作简便直观,支持多种输入方式(如文本、语音),满足不同用户的习惯需求。 7. **多终端访问**:支持网页端、移动端等多种设备接入,让用户随时随地都能访问到所需的知识信息。 fastgpt知识库的目标是成为全球领先的智能信息服务平台,为个人学习成长、科学研究、技术创新等领域提供强大的支撑。同时,它还致力于推动人工智能技术的发展,促进知识传播的有效性和普及性。 --- 相关问题 --- 1. fastgpt知识库如何保障数据的安全性和准确性? 2. 用户在使用fastgpt知识库时需要注册账号吗? 3. fastgpt知识库是否支持离线访问?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值