T1
问题:
炎炎夏日,多多实在太无聊了,唯有学习才能保持内心的安宁。多多最近在学习矩阵知识,但他遇到了一类奇怪的矩阵。因此想把矩阵打印出来好好观察。对于一个n阶矩阵,首先用米字型分割线把矩阵等分为8个区域,然后从右上角开始,按照逆时针顺序给区域编号1,2,……,8
思路:
将矩阵分为四个block,然后循环判断,最后拼接。
代码:
import numpy as np
def T1(n):
if n < 4:
return [[0 for i in range(n)] for j in range(n)]
num = n // 2
block1 = [[0 for i in range(num)] for j in range(num)]
for i in range(num-1):
for j in range(i+1, num):
block1[i][j] = 2
block1[j][i] = 3
block2 = [[0 for i in range(num)] for j in range(num)]
for i in range(num-1):
for j in range(num-1 - i):
block2[i][j] = 4
for i in range(num-1, 0, -1):
for j in range(num-1, num - 1 - i, -1):
block2[i][j] = 5
block3 = [[0 for i in range(num)] for j in range(num)]
for i in range(num-1):
for j in range(i+1, num):
block3[i][j] = 7
block3[j][i] = 6
block4 = [[0 for i in range(num)] for j in range(num)]
for i in range(num-1):
for j in range(num-1 - i):
block4[i][j] = 1
for i in range(num-1, 0, -1):
for j in range(num-1, num - 1 - i, -1):
block4[i][j] = 8
if n % 2: #奇数需要添加零
hzero = [[0] for i in range(num)]
vzero = [0 for i in range(n)]
a = np.hstack((block1, hzero, block4))
b = np.hstack((block2, hzero, block3))
result = np.vstack((a, vzero, b))
else:
a = np.hstack((block1, block4))
b = np.hstack((block2, block3))
result = np.vstack((a,b))
return result
T2
问题:
多多最近在玩一款叫做《野蛮六》的回合制策略游戏。在这个游戏中,地图可以视为一个NM的矩阵,划分为NM个正方形的格子。一个格子的上下左右4个格子视为与该格子相邻。玩家可以在每个格子上布置一个士兵。并且每个士兵可以和相邻的士兵归为同一队伍。在这个游戏中,同一队伍的士兵数量越多,就越强大。多多现在有一个道具可以移动任意一个格子上的士兵到任意一个空格子中。求移动后可得到的最大士兵数量。
思路:
Leetcode最大人工岛 link.
- dfs将图中队伍进行编号和计数{编号:数量}
- 遍历0点,将周围队伍的数量相加
- 和leetcode不太一样的是,本题是移动一个1而不是将0变为1。如果队伍数量和与图中所有队伍数量相等,士兵就是从本队伍移动不加1;否则士兵是从其它队伍移来,队伍数量加1。
代码:
def largestIsland(self, grid) -> int:
def dfs(i, j, grid, numorder):
if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]):
return 0
if grid[i][j] != 1:
return 0
grid[i][j] = numorder
return 1 + dfs(i - 1, j, grid, numorder) + dfs(i + 1, j, grid, numorder) + dfs(i, j - 1, grid, numorder) + dfs(
i, j + 1, grid, numorder)
index = 2
land = {}
totalareas = 0
maxland = 0
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j] == 1:
land[index] = dfs(i, j, grid, index)
totalareas += land[index]
maxland = max(maxland, land[index])
index += 1
maxarea = 0
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j] == 0:
tmp = set()
tmpsum = 0
if i > 0: tmp.add(grid[i - 1][j])
if i < len(grid) - 1: tmp.add(grid[i + 1][j])
if j > 0: tmp.add(grid[i][j - 1])
if j < len(grid[0]) - 1: tmp.add(grid[i][j + 1])
tmp = list(tmp)
for k in range(len(tmp)):
tmpsum += land.get(tmp[k], 0)
maxarea = max(maxarea, tmpsum)
maxarea = max(maxland, maxarea)
if maxarea == totalareas:
return maxarea
else:
return maxarea + 1
T3
问题:
在神奇的一天,多多背着一个神奇的背包来到一个神奇的商店,商店里有N个神奇的商品。商店让多多挑任意个商品放入背包带走。多多发现,这些商品中有些会占用背包的一部分空间,但也有些商品反而会让背包变得更大。同时,这些商品中有些具有一定的收益,但也有些商品是负收益。多多想知道它今天能带走的最大收益是多少。
对于前60%的数据,商品占用的背包空间和商品的收益均为非负整数!
分析:
- 简单01背包可以60%解
- 带有负值的背包:物体体积是负数,表示加入它背包体积会变大。对于这种情况,我们先将背包体积扩容(默认上来背包中就有它们),然后将它们b变为相反数(负变正),之后进行01背包(如果在跑背包的时候,选择了它的相反数这个物体,表示把这个物体移除)
代码:
简单01背包
def Bag(n, weights, values, cap):
dplist = [0 for j in range(cap+1)]
for i in range(cap+1):
if weights[0] <= i:
dplist[i] = values[0]
for i in range(1, n):
for j in range(cap, -1, -1):
if weights[i] <= j:
dplist[j] = max(dplist[j], values[i] + dplist[j-weights[i]])
return dplist[cap]
存在负重量、负价值的背包问题
def Bag2(n, weights, values, cap):
ans = 0
for i in range(n):
if weights[i] < 0:
ans += values[i]
cap -= weights[i]
weights[i] = -weights[i]
values[i] = -values[i]
dplist = [0 for j in range(cap+1)]
for i in range(cap+1):
if weights[0] <= i:
dplist[i] = values[0]
for i in range(1, n):
for j in range(cap, -1, -1):
if weights[i] <= j:
dplist[j] = max(dplist[j], values[i] + dplist[j-weights[i]])
return dplist[cap] + ans
T4
问题:
多多君最近在研究新的一组函数:
多多君认为,若某个正整数x可以被特征值集合中的某个数Y整除,那么这个正整数x是具有“显著特征”的。对于给定N和M,其中N表示正整数集合1-N中,一共有多少具有显著特征的数字。
1
<
=
N
<
=
1000000000
,
1
<
=
M
<
=
10
1 <= N <= 1000000000, 1 <= M <= 10
1<=N<=1000000000,1<=M<=10
M
中
数
字
y
i
,
1
<
=
y
i
<
=
20
M中数字yi, 1 <= yi <= 20
M中数字yi,1<=yi<=20
思路:
- 得到元素互斥的M序列
- 子序列全排列:二进制模拟数字是否存在(0不存在,1存在)
- 容斥原理:奇数长度相加,偶数长度相减
例如四个元素: A ∪ B ∪ C ∪ D = A + B + C + D ﹣ ( A ∩ B + B ∩ C + C ∩ D + A ∩ C + A ∩ D + B ∩ D ) + ( A ∩ B ∩ C + A ∩ B ∩ D + B ∩ C ∩ D ) ﹣ A ∩ B ∩ C ∩ D A∪B∪C∪D = A+B+C+D ﹣(A∩B+B∩C+C∩D+A∩C+A∩D+B∩D)+(A∩B∩C+A∩B∩D+B∩C∩D)﹣A∩B∩C∩D A∪B∪C∪D=A+B+C+D﹣(A∩B+B∩C+C∩D+A∩C+A∩D+B∩D)+(A∩B∩C+A∩B∩D+B∩C∩D)﹣A∩B∩C∩D
代码:
def T4(n, m, mlist):
if 1 in mlist:
return n
#得到元素互质的mlist
mlist.sort()
index = 0
while index != len(mlist) - 1:
tmp = []
for i in range(index+1, len(mlist)):
if mlist[i] % mlist[index] == 0:
tmp.append(mlist[i])
for i in tmp:
mlist.remove(i)
index += 1
#得到mlist的子序列全排列numlist
numlist = []
size = len(mlist)
end = 1 << size
for index in range(end):
arr = []
for j in range(size):
if (index >> j) % 2:
arr.append(mlist[j])
numlist.append(arr)
print(numlist)
#利用容斥原理,奇数长度加,偶数长度减
ans = 0
for i in numlist:
tmp = 1
for j in i:
tmp *= j
if len(i):
if len(i) == 1:
ans += n // tmp
elif len(i) % 2:
ans += n // tmp
else:
ans -= n // tmp
return ans