第三版-Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow+PDF书本+各章节代码

Sebastian RaschkaVahid Mirjalili编著,是一本关于使用Python进行机器学习和深度学习的实用指南。该书全面覆盖了机器学习和深度学习的基础知识、算法和实际应用,适合初学者和有一定经验的开发者。

目录

  1. 绪论

    介绍机器学习的基本概念、假设空间、归纳偏好、发展历程和应用现状。
  2. 模型评估与选择

    讨论模型的经验误差与过拟合、评估方法、性能度量、比较检验、偏差与方差。
  3. 线性模型

    介绍线性回归、对数几率回归、线性判别分析、多分类学习和类别不平衡问题。
  4. 决策树

    讨论决策树的基本流程、划分选择、剪枝处理以及多变量决策树。
  5. 神经网络

    介绍神经元模型、感知机、多层网络、误差逆传播算法和深度学习。
  6. 支持向量机

    讨论间隔与支持向量、对偶问题、核函数、软间隔与正则化、支持向量回归。
  7. 贝叶斯分类器

    介绍贝叶斯决策论、极大似然估计、朴素贝叶斯分类器和贝叶斯网络。
  8. 集成学习

    讨论个体与集成、Boosting、Bagging与随机森林、结合策略。
  9. 聚类

    介绍聚类任务、性能度量、距离计算、原型聚类、密度聚类和层次聚类。
  10. 降维与度量学习

    讨论k近邻学习、低维嵌入、主成分分析、流形学习和度量学习。
  11. 特征选择与稀疏学习

    介绍子集搜索与评价、过滤式选择、包裹式选择和嵌入式选择与L1正则化。
  12. 计算学

Through exposure to the news and social media, you are probably aware of the fact that machine learning has become one of the most exciting technologies of our time and age. Large companies, such as Google, Facebook, Apple, Amazon, and IBM, heavily invest in machine learning research and applications for good reasons. While it may seem that machine learning has become the buzzword of our time and age, it is certainly not a fad. This exciting field opens the way to new possibilities and has become indispensable to our daily lives. This is evident in talking to the voice assistant on our smartphones, recommending the right product for our customers, preventing credit card fraud, filtering out spam from our email inboxes, detecting and diagnosing medical diseases, the list goes on and on. If you want to become a machine learning practitioner, a better problem solver, or maybe even consider a career in machine learning research, then this book is for you. However, for a novice, the theoretical concepts behind machine learning can be quite overwhelming. Many practical books have been published in recent years that will help you get started in machine learning by implementing powerful learning algorithms. Getting exposed to practical code examples and working through example applications of machine learning are a great way to dive into this field. Concrete examples help illustrate the broader concepts by putting the learned material directly into action. However, remember that with great power comes great responsibility! In addition to offering a hands-on experience with machine learning using the Python programming languages and Python-based machine learning libraries, this book introduces the mathematical concepts behind machine learning algorithms, which is essential for using machine learning successfully. Thus, this book is different from a purely practical book; it is a book that discusses the necessary details regarding machine learning concepts and offers intuitive yet informative explanations of how machine learning algorithms work, how to use them, and most importantly, how to avoid the most common pitfalls. Currently, if you type "machine learning" as a search term in Google Scholar, it returns an overwhelmingly large number of publications—1,800,000. Of course, we cannot discuss the nitty-gritty of all the different algorithms and applications that have emerged in the last 60 years. However, in this book, we will embark on an exciting journey that covers all the essential topics and concepts to give you a head start in this field. If you find that your thirst for knowledge is not satisfied, this book references many useful resources that can be used to follow up on the essential breakthroughs in this field. If you have already studied machine learning theory in detail, this book will show you how to put your knowledge into practice. If you have used machine learning techniques before and want to gain more insight into how machine learning actually works, this book is for you. Don't worry if you are completely new to the machine learning field; you have even more reason to be excited. Here is a promise that machine learning will change the way you think about the problems you want to solve and will show you how to tackle them by unlocking the power of data. Before we dive deeper into the machine learning field, let's answer your most important question, "Why Python?" The answer is simple: it is powerful yet very accessible. Python has become the most popular programming language for data science because it allows us to forget about the tedious parts of programming and offers us an environment where we can quickly jot down our ideas and put concepts directly into action. We, the authors, can truly say that the study of machine learning has made us better scientists, thinkers, and problem solvers. In this book, we want to share this knowledge with you. Knowledge is gained by learning. The key is our enthusiasm, and the real mastery of skills can only be achieved by practice. The road ahead may be bumpy on occasions and some topics may be more challenging than others, but we hope that you will embrace this opportunity and focus on the reward. Remember that we are on this journey together, and throughout this book, we will add many powerful techniques to your arsenal that will help us solve even the toughest problems the data-driven way.
Deep learning is making waves. At the time of this writing (March 2016), Google’s AlghaGo program just beat 9-dan professional Go player Lee Sedol at the game of Go, a Chinese board game. Experts in the field of Artificial Intelligence thought we were 10 years away from achieving a victory against a top professional Go player, but progress seems to have accelerated! While deep learning is a complex subject, it is not any more difficult to learn than any other machine learning algorithm. I wrote this book to introduce you to the basics of neural networks. You will get along fine with undergraduate-level math and programming skill. All the materials in this book can be downloaded and installed for free. We will use the Python programming language, along with the numerical computing library Numpy. I will also show you in the later chapters how to build a deep network using Theano and TensorFlow, which are libraries built specifically for deep learning and can accelerate computation by taking advantage of the GPU. Unlike other machine learning algorithms, deep learning is particularly powerful because it automatically learns features. That means you don’t need to spend your time trying to come up with and test “kernels” or “interaction effects” - something only statisticians love to do. Instead, we will let the neural network learn these things for us. Each layer of the neural network learns a different abstraction than the previous layers. For example, in image classification, the first layer might learn different strokes, and in the next layer put the strokes together to learn shapes, and in the next layer put the shapes together to form facial features, and in the next layer have a high level representation of faces. On top of all this, deep learning is known for winning its fair share Kaggle contests. These are machine learning contests that are open to anyone in the world who are allowed to use any machine learning technique they want. Deep learning is that powerful. Do you want a gentle introduction to this “dark art”, with practical code examples that you can try right away and apply to your own data? Then this book is for you. Who is this book NOT for? Deep Learning and Neural Networks are usually taught at the upper-year undergraduate level. That should give you some idea of the type of knowledge you need to understand this kind of material. You absolutely need exposure to calculus to understand deep learning, no matter how simple the instructor makes things. Linear algebra would help. I will assume familiarity with Python (although it is an easy language to pick up). You will need to have some concept of machine learning. If you know about algorithms like logistic regression already, this book is perfect for you. If not, you might want to check out my “prerequisites” book, at: http://amzn.com/B01D7GDRQ2 On the other hand, this book is more like a casual primer than a dry textbook. If you are looking for material on more advanced topics, like LSTMs, convolutional neural networks, or reinforcement learning, I have online courses that teach this material, for example: https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow New libraries like TensorFlow are being updated constantly. This is not an encyclopedia for these libraries (as such a thing would be impossible to keep up to date). In the one (1!!!) month since the book was first published, no less than THREE new wrapper libraries for TensorFlow have been released to make coding deep networks easier. To try and incorporate every little update would not only be impossible, but would continually cause parts of the book to be obsolete. Nobody wants that. This book, rather, includes fundamentals. Understanding these building blocks will make tackling these new libraries and features a piece of cake - that is my goal.
Hands-On Data Science and Python Machine Learning by Frank Kane English | 31 July 2017 | ISBN: 1787280748 | ASIN: B072QBVXGH | 420 Pages | AZW3 | 7.21 MB Key Features Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Book Description Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. What you will learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值