由Sebastian Raschka和Vahid Mirjalili编著,是一本关于使用Python进行机器学习和深度学习的实用指南。该书全面覆盖了机器学习和深度学习的基础知识、算法和实际应用,适合初学者和有一定经验的开发者。
目录
-
绪论
介绍机器学习的基本概念、假设空间、归纳偏好、发展历程和应用现状。 -
模型评估与选择
讨论模型的经验误差与过拟合、评估方法、性能度量、比较检验、偏差与方差。 -
线性模型
介绍线性回归、对数几率回归、线性判别分析、多分类学习和类别不平衡问题。 -
决策树
讨论决策树的基本流程、划分选择、剪枝处理以及多变量决策树。 -
神经网络
介绍神经元模型、感知机、多层网络、误差逆传播算法和深度学习。 -
支持向量机
讨论间隔与支持向量、对偶问题、核函数、软间隔与正则化、支持向量回归。 -
贝叶斯分类器
介绍贝叶斯决策论、极大似然估计、朴素贝叶斯分类器和贝叶斯网络。 -
集成学习
讨论个体与集成、Boosting、Bagging与随机森林、结合策略。 -
聚类
介绍聚类任务、性能度量、距离计算、原型聚类、密度聚类和层次聚类。 -
降维与度量学习
讨论k近邻学习、低维嵌入、主成分分析、流形学习和度量学习。 -
特征选择与稀疏学习
介绍子集搜索与评价、过滤式选择、包裹式选择和嵌入式选择与L1正则化。 -
计算学