第三版-Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow+PDF书本+各章节代码

Sebastian RaschkaVahid Mirjalili编著,是一本关于使用Python进行机器学习和深度学习的实用指南。该书全面覆盖了机器学习和深度学习的基础知识、算法和实际应用,适合初学者和有一定经验的开发者。

目录

  1. 绪论

    介绍机器学习的基本概念、假设空间、归纳偏好、发展历程和应用现状。
  2. 模型评估与选择

    讨论模型的经验误差与过拟合、评估方法、性能度量、比较检验、偏差与方差。
  3. 线性模型

    介绍线性回归、对数几率回归、线性判别分析、多分类学习和类别不平衡问题。
  4. 决策树

    讨论决策树的基本流程、划分选择、剪枝处理以及多变量决策树。
  5. 神经网络

    介绍神经元模型、感知机、多层网络、误差逆传播算法和深度学习。
  6. 支持向量机

    讨论间隔与支持向量、对偶问题、核函数、软间隔与正则化、支持向量回归。
  7. 贝叶斯分类器

    介绍贝叶斯决策论、极大似然估计、朴素贝叶斯分类器和贝叶斯网络。
  8. 集成学习

    讨论个体与集成、Boosting、Bagging与随机森林、结合策略。
  9. 聚类

    介绍聚类任务、性能度量、距离计算、原型聚类、密度聚类和层次聚类。
  10. 降维与度量学习

    讨论k近邻学习、低维嵌入、主成分分析、流形学习和度量学习。
  11. 特征选择与稀疏学习

    介绍子集搜索与评价、过滤式选择、包裹式选择和嵌入式选择与L1正则化。
  12. 计算学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值