斯坦福吴恩达-深度学习和机器学习全套视频+课件!

这些课程专为已有一定基础(基本的编程知识,熟悉 Python、对机器学习有基本了
解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业
最热门的技能之一,本课程将帮你掌握深度学习。” 学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。 Deep Learning Specialization 对卷积神经网络 (CNN)递归神经网络 (RNN)长短期记忆 (LSTM) 等深度学习常用的网络结构、工具和知识都有涉及。
课程中也会有很多实操项目,帮助学生更好地应用自己学到的深度学习技术,解决真
实世界问题。这些项目将涵盖医疗、自动驾驶、和自然语言处理等时髦领域,以及音乐生
成等等。 Coursera 上有一些特定方向和知识的资料,但一直没有比较全面、深入浅出的深
度学习课程——《深度学习专业》的推出补上了这一空缺。

# 目录

## 第一门课 神经网络和深度学习 (Neural Networks and Deep Learning)
1. 第一周:深度学习引言 (Introduction to Deep Learning)
    - 1.1 欢迎 (Welcome)
    - 1.2 什么是神经网络? (What is a Neural Network)
    - 1.3 神经网络的监督学习 (Supervised Learning with Neural Networks)
    - 1.4 为什么深度学习会兴起? (Why is Deep Learning taking off?)
    - 1.5 关于这门课 (About this Course)
    - 1.6 课程资源 (Course Resources)

2. 第二周:神经网络的编程基础 (Basics of Neural Network Programming)
    - 2.1 二分类 (Binary Classification)
    - 2.2 逻辑回归 (Logistic Regression)
    - 2.3 逻辑回归的代价函数 (Logistic Regression Cost Function)
    - 2.4 梯度下降法 (Gradient Descent)
    - 2.5 导数 (Derivatives)
    - 2.6 更多的导数例子 (More Derivative Examples)
    - 2.7 计算图 (Computation Graph)
    - 2.8 使用计算图求导数 (Derivatives with a Computation Graph)
    - 2.9 逻辑回归中的梯度下降 (Logistic Regression Gradient Descent)
    - 2.10 m个样本的梯度下降 (Gradient Descent on m Examples)
    - 2.11 向量化 (Vectorization)
    - 2.12 向量化的更多例子 (More Examples of Vectorization)
    - 2.13 向量化逻辑回归 (Vectorizing Logistic Regression)
    - 2.14 向量化逻辑回归的梯度输出 (Vectorizing Logistic Regression's Gradient)
    - 2.15 Python中的广播 (Broadcasting in Python)
    - 2.16 关于python/numpy向量的说明 (A note on python or numpy vectors)
    - 2.17 Jupyter/iPython Notebooks快速入门 (Quick tour of Jupyter/iPython Notebooks)
    - 2.18 (选修) logistic损失函数的解释 (Explanation of logistic regression cost function)

3. 第三周:浅层神经网络 (Shallow Neural Networks)
    - 3.1 神经网络概述 (Neural Network Overview)
    - 3.2 神经网络的表示 (Neural Network Representation)
    - 3.3 计算一个神经网络的输出 (Computing a Neural Network's output)
    - 3.4 多样本向量化 (Vectorizing across multiple examples)
    - 3.5 向量化实现的解释 (Justific

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值