Mathematical Theories of Machine Learning - Theory and Applications (2020, Springer)

本书《机器学习的数学理论:理论与应用》全面探讨了机器学习算法的数学基础及其应用。它阐述了理解机器学习算法有效性所需的理论框架,并提供了优化机器学习过程的新技术。全书分为三个主要部分:

  1. 引言:介绍了机器学习、神经网络、深度学习和梯度下降的基本概念,解释了这些概念的重要性及其在各个领域的应用。
  2. 机器学习的数学框架:理论部分:深入探讨了支撑机器学习算法的数学理论,包括优化技术、梯度下降收敛和非凸优化问题中实现高速收敛的新方法。
  3. 机器学习的数学框架:应用部分:重点介绍了前述理论概念的实际应用,包括改进的稀疏子空间聚类算法、在线发现多变量时间序列中的稳定因果关系,并通过实证研究展示了所提出方法的有效性。

目录(中文)

  • 引言:介绍了机器学习、神经网络、深度学习和梯度下降的基本概念,解释了这些概念的重要性及其在各个领域的应用。
  • 机器学习的数学框架:理论部分:深入探讨了支撑机器学习算法的数学理论,包括优化技术、梯度下降收敛和非凸优化问题中实现高速收敛的新方法。
  • 机器学习的数学框架:应用部分:重点介绍了前述理论概念的实际应用,包括改进的稀疏子空间聚类算法、在线发现多变量时间序列中的稳定因果关系,并通过实证研究展示了所提出方法的有效性。
  • 第一部分:引言

    • 第一章:引言
      • 1.1 神经网络
        • 1.1.1 迭代的学习过程
        <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值