算法
文章平均质量分 62
阿里贝尔
任何外在的力量也代替不了自身的努力
展开
-
算法分析与设计复习概要(上)
本文仅仅是为了快速理解掌握多个经典算法类型而总结的思想性概要,并无算法实现。1. 递归递归算法的经典实例为汉诺塔问题和全排列问题,在此对汉诺塔问题简单总结一下。 假设f(n-1)已经解决,如何解决f(n)问题,也就是说假设n-1个圆盘的顺序已经安放正确,如何正确安放第n个圆盘, 使得所有n个圆盘安放正确。Hanoi(n,A,B,C)if n=1 将原创 2015-12-28 16:41:30 · 656 阅读 · 0 评论 -
通俗理解爬山算法
爬山算法贪心算法 爬山算法即是模拟爬山的过程,随机选择一个位置爬山,每次朝着更高的方向移动,直到到达山顶,即每次都在临近的空间中选择最优解作为当前解,直到局部最优解。这样算法会陷入局部最优解,能否得到全局最优解取决于初始点的位置。初始点若选择在全局最优解附近,则就可能得到全局最优解。原创 2015-12-01 12:28:24 · 11755 阅读 · 0 评论 -
通俗理解模拟退火算法
模拟退火算法 模拟退火算法是是爬山算法的改进算法,算法过程中是以一定的概率接受一个比当前解更差的解,故有可能跳出局部最优解从而达到全局最优解。更新解的情况如下:1.移动后得到更优解,则总是接受该移动 2.移动后比当前解要差,则以一定概率接受该移动 模拟退火算法解决旅行商问题 旅行商问题:亦称货郎从N个城市的某个城市A,唯一遍历剩下的N-1个城市,原创 2015-12-01 13:04:15 · 2098 阅读 · 0 评论 -
深刻理解SVM
这是我看到的对SVM理解最深刻的博文之一,本文转自http://blog.csdn.net/v_july_v/article/details/7624837,仔细阅读之后,读者定有收获。前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也转载 2016-02-29 20:20:24 · 7697 阅读 · 2 评论 -
通俗理解EM算法
这是我见到的比较通俗易懂地讲解EM算法的博客,对我理解EM算法起到非常大的帮助作用。博客转自zouxy09的专栏,地址为:http://blog.csdn.net/zouxy09/article/details/8537620 ,在此表示感谢。从最大似然到EM算法浅解zouxy09@qq.comhttp://blog.csdn.net/zouxy09转载 2016-05-13 21:51:15 · 8498 阅读 · 0 评论 -
机器学习——K近邻算法(KNN)
K近邻算法的原理:存在一个样本集合,其中包括样本和其对应的标签,计算新数据的标签与各个样本标签的相似度,选择最相似的K(一般不大于20)个标签类别,标签类别出现次数最多的标签就是新数据的标签。下面用一个简单的例子介绍一下KNN算法。1.准备数据 from numpy import * import operator group = array([[1.0,1.1],[1.0,1.原创 2016-03-08 20:25:23 · 649 阅读 · 0 评论 -
机器学习——感知机学习
本篇博客是实现《统计学习方法》中的第二章所讲述的感知机学习 ,这是一个很简单的模型,下面给出算法,下面给出python代码,包括画出图像#!/usr/bin/env python# encoding: utf-8import matplotlib.pyplot as pltimport numpy as npx_list = [[3,3],[4,3],[1,2],[1,原创 2016-07-05 14:29:21 · 736 阅读 · 0 评论 -
机器学习——朴素贝叶斯法(naive Bayes)
朴素贝叶斯的原理再此就不细说了,有兴趣的朋友参看《统计学习方法》,里面给出详细的说明。本文仅给出算法,同时做出少量解释,然后给出python的实现。 下面给出相应的算法描述 在输入中,训练数据的每个元素由特征X和标签Y组成,特征X是一个包含n个x元素的列向量。 第一步:计算先验概率和条件概率。 公式一原创 2016-07-19 14:31:00 · 1409 阅读 · 0 评论 -
Pareto Ensemble Pruning(周志华)
最近阅读了周志华老师的《Pareto Ensemble Pruning》一文,将理解制作成pdf如下与大家讨论。有关实验部分略去。上传后显示可能不全或者不清楚,需要清晰版的请留言联系本人。原创 2016-10-14 20:27:36 · 1757 阅读 · 4 评论