Python笔记-DataFrames数据索引 (pandas)

本文介绍了Python中DataFrame的数据索引,包括将DataFrame视为字典和二维数组的视角。重点讲解了Pandas的loc(显式索引)、iloc(隐式索引)以及不推荐的ix(混合索引)的用法,强调了使用loc和iloc的可维护性和可读性。
摘要由CSDN通过智能技术生成

前置知识 - Series索引,NumPy数组索引,Python列表索引

相关知识 - 索引、切边、掩码、花哨的索引,组合索引

1. 将DataFrame看作字典

把 DataFrame 当作一个由若干 Series 对象构成的字典

#DataFrames数据选择示例
import pandas as pd
#把 DataFrame 当作一个由若干 Series 对象构成的字典
#创建dataframe
s1 = pd.Series({"a":"chinese","b":"math"})
s2 = pd.Series({"a":87,"b":98})
df = pd.DataFrame({"subject": s1, "grade":s2})
print("Out1:\n", df)
print("Out2:\n", df["grade"])
#也可以用属性形式(attribute-style)选择纯字符串列名的数据
print("Out3:\n", df.subject)
#如果列名不是纯字符串,或者列名与 DataFrame 的方法同名,那么就不能用属性索引。
#还应该避免对用属性形式选择的列直接赋值(即可以用 data['pop'] = z,但不要用data.pop = z)
Out1:
    subject  grade
a  chinese     87
b     math     98
Out2:
a    87
b    98
Name: grade, dtype: int64
Out3:
a    chinese
b       math
Name: subject, dtype: object
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值