可解释神经网络与图神经网络技术解析
可解释神经网络相关研究
可解释神经网络在多个领域有着广泛的研究和应用,众多学者在这方面做出了诸多贡献。以下是一些关键研究成果的介绍:
- 医疗领域模型 :R. Caruana等人在医疗领域构建了可理解的模型,用于预测肺炎风险和医院30天再入院情况;Z. Che等人则专注于重症监护室(ICU)结果预测的可解释深度模型。
- 模型偏差检测 :S. Tan等人提出利用透明模型蒸馏检测黑盒模型中的偏差,并进行黑盒模型审计。
- 模型解释方法 :M. T. Ribeiro等人提出了“为什么我应该信任你?”这一解释任何分类器预测的方法,以及高精度的与模型无关的解释方法“Anchors”。
- 图像相关研究 :A. Mahendran和A. Vedaldi通过反转来理解深度图像表示;D. Smilkov等人提出SmoothGrad方法,通过添加噪声来去除噪声。
这些研究成果为可解释神经网络的发展提供了丰富的理论和实践基础。
图神经网络的概念
图神经网络(GNN)旨在扩展现有神经网络,以处理图域中表示的数据。在图中,每个节点由其自身特征和相关节点的特征定义。GNN的目标是为每个节点学习一个包含邻域信息的状态嵌入$h_v \in R^s$,该状态嵌入是节点$v$的$s$维向量,可用于生成输出$o_v$。
相关公式如下:
- 局部状态和输出定义:$h_v = f(x_v, x_{co}[v], h_{ne}[v], x_{
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



