舆情监控系统——step2.利用SVM实现中文文本分类

本文介绍了如何利用SVM实现中文文本分类,包括数据预处理、卡方检验特征选择、TF-IDF算法和使用LIBSVM训练模型。通过训练,测试集预测准确率达到92%。
摘要由CSDN通过智能技术生成

先放GitHub代码,如果觉得写得不错,记得加个star哦,嘻嘻~

基本流程

1、准备好数据食材、去停用词并利用结巴(jieba)进行分词处理

数据食材选用参考:NLP中必不可少的语料资源

jieba分词模块参考官方文档啦~

# 参照代码中的cutWords.py文件

2、利用卡方检验特征选择

卡方检验:在构建每个类别的词向量后,对每一类的每一个单词进行其卡方统计值的计算。
1. 首先对卡方 检验所需的 a、b、c、d 进行计算。
a 为在这个分类下包含这个词的文档数量;
b 为不在该分类下包含这个词的文档数量;
c 为在这个分类下不包含这个词的文档数量;
d 为不在该分类下,且不包含这个词的文档数量。
2. 然后得到该类中该词的卡方统计值
公式为 float(pow((a*d - b*c), 2)) /float((a+c) * (a+b) * (b+d) * (c+d))。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值