【python/M/152】Maximum Product Subarray

题目

在这里插入图片描述

基本思路

典型的动态规划问题
在整个过程中,dp[i]的值只需要dp[i-1]的值,不需要保存整个DP表,则DP可以用滚动数组进行优化。
其实就是设一对prevMin/prevMax表示上一个值,以及还有一对curMin/curMax表示当前值。

实现代码

class Solution(object):
    def maxProduct(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        length = len(nums)
        maxPro = nums[0]
        prevMax,prevMin = nums[0],nums[0]
        
        for i in range(1,length):
            curMax = max(nums[i],max(prevMax*nums[i],prevMin*nums[i]))
            curMin = min(nums[i],min(prevMax*nums[i],prevMin*nums[i]))
            prevMax,prevMin = curMax,curMin
            maxPro = max(prevMax,maxPro)
            
        return maxPro
        
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值