基于卷积神经网络CNN的电影推荐系统

本项目使用文本卷积神经网络,并使用MovieLens数据集完成电影推荐的任务。推荐系统在日常的网络应用中无处不在,比如网上购物、网上买书、新闻app、社交网络、音乐网站、电影网站等等等等,有人的地方就有推荐。根据个人的喜好,相同喜好人群的习惯等信息进行个性化的内容推荐。比如打开新闻类的app,因为有了个性化的内容,每个人看到的新闻首页都是不一样的。这当然是很有用的,在信息爆炸的今天,...
摘要由CSDN通过智能技术生成

本项目使用文本卷积神经网络,并使用MovieLens数据集完成电影推荐的任务。

推荐系统在日常的网络应用中无处不在,比如网上购物、网上买书、新闻app、社交网络、音乐网站、电影网站等等等等,有人的地方就有推荐。根据个人的喜好,相同喜好人群的习惯等信息进行个性化的内容推荐。比如打开新闻类的app,因为有了个性化的内容,每个人看到的新闻首页都是不一样的。

这当然是很有用的,在信息爆炸的今天,获取信息的途径和方式多种多样,人们花费时间最多的不再是去哪获取信息,而是要在众多的信息中寻找自己感兴趣的,这就是信息超载问题。为了解决这个问题,推荐系统应运而生。

协同过滤是推荐系统应用较广泛的技术,该方法搜集用户的历史记录、个人喜好等信息,计算与其他用户的相似度,利用相似用户的评价来预测目标用户对特定项目的喜好程度。优点是会给用户推荐未浏览过的项目,缺点呢,对于新用户来说,没有任何与商品的交互记录和个人喜好等信息,存在冷启动问题,导致模型无法找到相似的用户或商品。

为了解决冷启动的问题,通常的做法是对于刚注册的用户,要求用户先选择自己感兴趣的话题、群组、商品、性格、喜欢的音乐类型等信息,比如豆瓣FM:

68720d15ly1g1wbeoyldaj208c0etdhl.jpg

下载数据集

运行下面代码把数据集下载下来

import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
from collections import Counter
import tensorflow as tf

import os
import pickle
import re
from tensorflow.python.ops import math_ops
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import zipfile
import hashlib

def _unzip(save_path, _, database_name, data_path):
    """
    解压
    :param save_path: The path of the gzip files
    :param database_name: Name of database
    :param data_path: Path to extract to
    :param _: HACK - Used to have to same interface as _ungzip
    """
    print('Extracting {}...'.format(database_name))
    with zipfile.ZipFile(save_path) as zf:
        zf.extractall(data_path)

def download_extract(database_name, data_path):
    """
    下载提取数据
    :param database_name: Database name
    """
    DATASET_ML1M = 'ml-1m'

    if database_name == DATASET_ML1M:
        url = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
        hash_code = 'c4d9eecfca2ab87c1945afe126590906'
        extract_path = os.path.join(data_path, 'ml-1m')
        save_path = os.path.join(data_path, 'ml-1m.zip')
        extract_fn = _unzip

    if os.path.exists(extract_path):
        print('Found {} Data'.format(database_name))
        return

    if not os.path.exists(data_path):
        os.makedirs(data_path)

    if not os.path.exists(save_path):
        with DLProgress(unit='B', unit_scale=True, miniters=1, desc='Downloading {}'.format(database_name)) as pbar:
            urlretrieve(
                url,
                save_path,
                pbar.hook)

    assert hashlib.md5(open(save_path, 'rb').read()).hexdigest() == hash_code, \
        '{} file is corrupted.  Remove the file and try again.'.format(save_path)

    os.makedirs(extract_path)
    try:
        extract_fn(save_path, extract_path, database_name, data_path)
    except Exception as err:
        shutil.rmtree(extract_path)  # Remove extraction folder if there is an error
        raise err

    print('Done.')
    # Remove compressed data
#     os.remove(save_path)

class DLProgress(tqdm):
    """
    下载时处理进度条
    """
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        """
        A hook function that will be called once on establishment of the network connection and
        once after each block read thereafter.
        :param block_num: A count of blocks transferred so far
        :param block_size: Block size in bytes
        :param total_size: The total size of the file. This may be -1 on older FTP servers which do not return
                            a file size in response to a retrieval request.
        """
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num
data_dir = './'
download_extract('ml-1m', data_dir)
Extracting ml-1m...
Done.

先来看看数据

本项目使用的是MovieLens 1M 数据集,包含6000个用户在近4000部电影上的1亿条评论。

数据集分为三个文件:

  • 用户数据users.dat
  • 电影数据movies.dat
  • 评分数据ratings.dat

用户数据

  • 用户ID
  • 性别
  • 年龄
  • 职业ID
  • 邮编

数据中的格式:UserID::Gender::Age::Occupation::Zip-code

  • Gender is denoted by a "M" for male and "F" for female
  • Age is chosen from the following ranges:

    • 1: "Under 18"
    • 18: "18-24"
    • 25: "25-34"
    • 35: "35-44"
    • 45: "45-49"
    • 50: "50-55"
    • 56: "56+"
  • Occupation is chosen from the following choices:

    • 0: "other" or not specified
    • 1: "academic/educator"
    • 2: "artist"
    • 3: "clerical/admin"
    • 4: "college/grad student"
    • 5: "customer service"
    • 6: "doctor/health care"
    • 7: "executive/managerial"
    • 8: "farmer"
    • 9: "homemaker"
    • 10: "K-12 student"
    • 11: "lawyer"
    • 12: "programmer"
    • 13: "retired"
    • 14: "sales/marketing"
    • 15: "scientist"
    • 16: "self-employed"
    • 17: "technician/engineer"
    • 18: "tradesman/craftsman"
    • 19: "unemployed"
    • 20: "writer"
users_title = ['UserID', 'Gender', 'Age', 'OccupationID', 'Zip-code']
users = pd.read_table('./ml-1m/users.dat', sep='::', header=None, names=users_title, engine = 'python')
users.head()
UserID Gender Age OccupationID Zip-code
0 1 F 1 10 48067
1 2 M 56 16 70072
2 3 M 25 15 55117
3 4 M 45 7 02460
4 5 M 25 20 55455

可以看出UserID、Gender、Age和Occupation都是类别字段,其中邮编字段是我们不使用的。

电影数据

  • 电影ID
  • 电影名
  • 电影风格

数据中的格式:MovieID::Title::Genres

  • Titles are identical to titles provided by the IMDB (including
    year of release)
  • Genres are pipe-separated and are selected from the following genres:

    • Action
    • Adventure
    • Animation
    • Children's
    • Comedy
    • Crime
    • Documentary
    • Drama
    • Fantasy
    • Film-Noir
    • Horror
    • Musical
    • Mystery
    • Romance
    • Sci-Fi
    • Thriller
    • War
    • Western
movies_title = ['MovieID', 'Title', 'Genres']
movies = pd.read_table('./ml-1m/movies.dat', sep='::', header=None, names=movies_title, engine = 'python')
movies.head()
MovieID Title Genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy

MovieID是类别字段,Title是文本,Genres也是类别字段

评分数据

  • 用户ID
  • 电影ID
  • 评分
  • 时间戳

数据中的格式:UserID::MovieID::Rating::Timestamp

  • UserIDs range between 1 and 6040
  • MovieIDs range between 1 and 3952
  • Ratings are made on a 5-star scale (whole-star ratings only)
  • Timestamp is represented in seconds since the epoch as returned by time(2)
  • Each user has at least 20 ratings
ratings_title = ['UserID','MovieID', 'Rating', 'timestamps']
ratings = pd.read_table('./ml-1m/ratings.dat', sep='::', header=None, names=ratings_title, engine = 'python')
ratings.head()
UserID MovieID Rating timestamps
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291

评分字段Rating就是我们要学习的targets,时间戳字段我们不使用。

来说说数据预处理

  • UserID、Occupation和MovieID不用变。
  • Gender字段:需要将‘F’和‘M’转换成0和1。
  • Age字段:要转成7个连续数字0~6。
  • Genres字段:是分类字段,要转成数字。首先将Genres中的类别转成字符串到数字的字典,然后再将每个电影的Genres字段转成数字列表,因为有些电影是多个Genres的组合。
  • Title字段:处理方式跟Genres字段一样,首先创建文本到数字的字典,然后将Title中的描述转成数字的列表。另外Title中的年份也需要去掉。
  • Genres和Title字段需要将长度统一,这样在神经网络中方便处理。空白部分用‘< PAD >’对应的数字填充。

实现数据预处理

def load_data():
    """
    从文件中加载数据集
    """
    # 读取User数据
    users_title = ['UserID', 'Gender', 'Age', 'JobID', 'Zip-code']
    users = pd.read_table('./ml-1m/users.dat', sep='::', header=None, names=users_title, engine = 'python')
    users = users.filter(regex='UserID|Gender|Age|JobID')
    users_orig = users.values
    
    # 改变User数据中性别和年龄
    gender_map = {'F':0, 'M':1}
    users['Gender'] = users['Gender'].map(gender_map)

    age_map = {val:ii for ii,val in enumerate(set(users['Age']))}
    users['Age'] = users['Age'].map(age_map)

    # 读取Movie数据集
    movies_title = ['MovieID', 'Title', 'Genres']
    movies = pd.read_table('./ml-1m/movies.dat', sep='::', header=None, names=movies_title, engine = 'python')
    movies_orig = movies.values
    # 将Title中的年份去掉
    pattern = re.compile(r'^(.*)\((\d+)\)$')

    title_map = {val:pattern.match(val).group(1) for ii,val in enumerate(set(movies['Title']))}
    movies['Title'] = movies['Title'].map(title_map)

    # 电影类型转数字字典
    genres_set = set()
    for val in movies['Genres'].str.split('|'):
        genres_set.update(val)

    genres_set.add('<PAD>')
    genres2int = {val:ii for ii, val in enumerate(genres_set)}

    # 将电影类型转成等长数字列表,长度是18
    genres_map = {val:[genres2int[row] for row in val.split('|')] for ii,val in enumerate(set(movies['Genres']))}

    for key in genres_map:
        for cnt in range(max(genres2int.values()) - len(genres_map[key])):
            genres_map[key].insert(len(genres_map[key]) + cnt,genres2int['<PAD>'])
    
    movies['Genres'] = movies['Genres'].map(genres_map)

    # 电影Title转数字字典
    title_set = set()
    for val in movies['Title'].str.split():
        title_set.update(val)
    
    title_set.add('<PAD>')
    title2int = {val:ii for ii, val in enumerate(title_set)}

    # 将电影Title转成等长数字列表,长度是15
    title_count = 15
    title_map = {val:[title2int[row] for row in val.split()] for ii,val in enumerate(set(movies['Title']))}
    
    for key in title_map:
        for cnt in range(title_count - len(title_map[key])):
            title_map[key].insert(len(title_map[key]) + cnt,title2int['<PAD>'])
    
    movies['Title'] = movies['Title'].map(title_map)

    # 读取评分数据集
    ratings_title = ['UserID','MovieID', 'ratings', 'timestamps']
    ratings = pd.read_table('./ml-1m/ratings.dat', sep='::', header=None, names=ratings_title, engine = 'python')
    ratings = ratings.filter(regex='UserID|MovieID|ratings')

    # 合并三个表
    data = pd.merge(pd.merge(ratings, users), movies)
    
    # 将数据分成X和y两张表
    target_fields = ['ratings']
    features_pd, targets_pd = data.drop(target_fields, axis=1), data[target_fields]
    
    features = features_pd.values
    targets_values = targets_pd.values
    
    return title_count, title_set, genres2int, features, targets_values, ratings, users, movies, data, movies_orig, users_orig

加载数据并保存到本地

  • title_count:Title字段的长度(15)
  • title_set:Title文本的集合
  • genres2int:电影类型转数字的字典
  • features:是输入X
  • targets_values:是学习目标y
  • ratings:评分数据集的Pandas对象
  • users:用户数据集的Pandas对象
  • movies:电影数据的Pandas对象
  • data:三个数据集组合在一起的Pandas对象
  • movies_orig:没有做数据处理的原始电影数据
  • users_orig:没有做数据处理的原始用户数据
# 加载数据
title_count, title_set, genres2int, features, targets_values, ratings, users, movies, data, movies_orig, users_orig = load_data()

# 存入文件中
pickle.dump((title_count, title_set, genres2int, features, targets_values, ratings, users, movies, data, movies_orig, users_orig), open('preprocess.p', 'wb'))

预处理后的数据

users.head()
UserID Gender Age JobID
0 1 0 0 10
1 2 1 5 16
2 3 1 6 15
3 4 1 2 7
4 5 1 6 20
movies.head()
MovieID Title Genres
0 1 [310, 2184, 634, 634, 634, 634, 634, 634, 634,... [0, 18, 7, 17, 17, 17, 17, 17, 17, 17, 17, 17,...
1 2 [1182, 634, 634, 634, 634, 634, 634, 634, 634,... [3, 18, 8, 17, 17, 17, 17, 17, 17, 17, 17, 17,...
2 3 [5011, 4744, 2629, 634, 634, 634, 634, 634, 63... [7, 9, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,...
3 4 [4095, 1535, 1886, 634, 634, 634, 634, 634, 63... [7, 5, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,...
4 5 [3563, 1725, 3790, 3727, 838, 343, 634, 634, 6... [7, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17...
movies.values[0]
array([1,
       list([310, 2184, 634, 634, 634, 634, 634, 634, 634, 634, 634, 634, 634, 634, 634]),
       list([0, 18, 7, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17])],
      dtype=object)

从本地读取数据

title_count, title_set, genres2int, features, targets_values, ratings, users, movies, data, movies_orig, users_orig = pickle.load(open('preprocess.p', mode='rb'))

模型设计

68720d15ly1g1wbfzalvfj20sg0lck1p.jpg

通过研究数据集中的字段类型,我们发现有一些是类别字段,通常的处理是将这些字段转成one hot编码,但是像UserID、MovieID这样的字段就会变成非常的稀疏,输入的维度急剧膨胀,这是我们不愿意见到的,毕竟我这小笔记本不像大厂动辄能处理数以亿计维度的输入:)

所以在预处理数据时将这些字段转成了数字,我们用这个数字当做嵌入矩阵的索引,在网络的第一层使用了嵌入层,维度是(N,32)和(N,16)。

电影类型的处理要多一步,有时一个电影有多个电影类型,这样从嵌入矩阵索引出来是一个(n,32)的矩阵,因为有多个类型嘛,我们要将这个矩阵求和,变成(1,32)的向量。

电影名的处理比较特殊,没有使用循环神经网络,而是用了文本卷积网络,下文会进行说明。

从嵌入层索引出特征以后,将各特征传入全连接层,将输出再次传入全连接层,最终分别得到(1,200)的用户特征和电影特征两个特征向量。

我们的目的就是要训练出用户特征和电影特征,在实现推荐功能时使用。得到这两个特征以后,就可以选择任意的方式来拟合评分了。我使用了两种方式,一个是上图中画出的将两个特征做向量乘法,将结果与真实评分做回归,采用MSE优化损失。因为本质上这是一个回归问题,另一种方式是,将两个特征作为输入,再次传入全连接层,输出一个值,将输出值回归到真实评分,采用MSE优化损失。

实际上第二个方式的MSE loss在0.8附近,第一个方式在1附近,5次迭代的结果。

文本卷积网络

网络看起来像下面这样

68720d15ly1g1wbgwy2zoj21hk0lmgpq.jpg

图片来自Kim Yoon的论文:Convolutional Neural Networks for Sentence Classification

将卷积神经网络用于文本的文章建议你阅读Understanding Convolutional Neural Networks for NLP

网络的第一层是词嵌入层,由每一个单词的嵌入向量组成的嵌入矩阵。下一层使用多个不同尺寸(窗口大小)的卷积核在嵌入矩阵上做卷积,窗口大小指的是每次卷积覆盖几个单词。这里跟对图像做卷积不太一样,图像的卷积通常用2x2、3x3、5x5之类的尺寸,而文本卷积要覆盖整个单词的嵌入向量,所以尺寸是(单词数,向量维度),比如每次滑动3个,4个或者5个单词。第三层网络是max pooling得到一个长向量,最后使用dropout做正则化,最终得到了电影Title的特征。

辅助函数

import tensorflow as tf
import os
import pickle

def save_params(params):
    """
    保存参数到文件中
    """
    pickle.dump(params, open('params.p', 'wb'))


def load_params():
    """
    从文件中加载参数
    """
    return pickle.load(open('params.p', mode='rb'))

编码实现

# 嵌入矩阵的维度
embed_dim = 32
# 用户ID个数
uid_max = max(features.take(0,1)) + 1 # 6040
# 性别个数
gender_max = max(features.take(2,1)) + 1 # 1 + 1 = 2
# 年龄类别个数
age_max = max(features.take(3,1)) + 1 # 6 + 1 = 7
# 职业个数
job_max = max(features.take(4,1)) + 1# 20 + 1 = 21

# 电影ID个数
movie_id_max = max(features.take(1,1)) + 1 # 3952
# 电影类型个数
movie_categories_max = max(genres2int.values()) + 1 # 18 + 1 = 19
# 电影名单词个数
movie_title_max = len(title_set) # 5216

# 对电影类型嵌入向量做加和操作的标志,考虑过使用mean做平均,但是没实现mean
combiner = "sum"

# 电影名长度
sentences_size = title_count # = 15
# 文本卷积滑动窗口,分别滑动2, 3, 4, 5个单词
window_sizes = {2, 3, 4, 5}
# 文本卷积核数量
filter_num = 8

# 电影ID转下标的字典,数据集中电影ID跟下标不一致,比如第5行的数据电影ID不一定是5
movieid2idx = {val[0]:i for i, val in enumerate(movies.values)}

超参

# Number of Epochs
num_epochs = 5
# Batch Size
batch_size = 256

dropout_keep = 0.5
# Learning Rate
learning_rate = 0.0001
# Show stats for every n number of batches
show_every_n_batches = 20

save_dir = './save'

输入

定义输入的占位符

def get_inputs():
    uid = tf.placeholder(tf.int32, [None, 1], name="uid")
    user_gender = tf.placeholder(tf.int32, [None, 1], name="user_gender")
    user_age = tf.placeholder(tf.int32, [None, 1], name="user_age")
    user_job = tf.placeholder(tf.int32, [None, 1], name="user_job")
    
    movie_id = tf.placeholder(tf.int32, [None, 1], name="movie_id")
    movie_categories = tf.placeholder(tf.int32, [None, 18], name="movie_categories")
    movie_titles = tf.placeholder(tf.int32, [None, 15], name="movie_titles")
    targets = tf.placeholder(tf.int32, [None, 1], name="targets")
    LearningRate = tf.placeholder(tf.float32, name = "LearningRate")
    dropout_keep_prob = tf.placeholder(tf.float32, name = "dropout_keep_prob")
    return uid, user_gender, user_age, user_job, movie_id, movie_categories, movie_titles, targets, LearningRate, dropout_keep_prob

构建神经网络

定义User的嵌入矩阵
def get_user_embedding(uid, user_gender, user_age, user_job):
    with tf.name_scope("user_embedding"):
        uid_embed_matrix = tf.Variable(tf.random_uniform([uid_max, embed_dim], -1, 1), name = "uid_embed_matrix")
        uid_embed_layer = tf.nn.embedding_lookup(uid_embed_matrix, uid, name = "uid_embed_layer")
    
        gender_embed_matrix = tf.Variable(tf.random_uniform([gender_max, embed_dim // 2], -1, 1), name= "gender_embed_matrix")
        gender_embed_layer = tf.nn.embedding_lookup(gender_embed_matrix, user_gender, name = "gender_embed_layer")
        
        age_embed_matrix = tf.Variable(tf.random_uniform([age_max, embed_dim // 2], -1, 1), name="age_embed_matrix")
        age_embed_layer = tf.nn.embedding_lookup(age_embed_matrix, user_age, name="age_embed_layer")
        
        job_embed_matrix = tf.Variable(tf.random_uniform([job_max, embed_dim // 2], -1, 1), name = "job_embed_matrix")
        job_embed_layer = tf.nn.embedding_lookup(job_embed_matrix, user_job, name = "job_embed_layer")
    return uid_embed_layer, gender_embed_layer, age_embed_layer, job_embed_layer
将User的嵌入矩阵一起全连接生成User的特征
def get_user_feature_layer(uid_embed_layer, gender_embed_layer, age_embed_layer, job_embed_layer):
    with tf.name_scope("user_fc"):
        #第一层全连接
        uid_fc_layer = tf.layers.dense(uid_embed_layer, embed_dim, name = "uid_fc_layer", activation=tf.nn.relu)
        gender_fc_layer = tf.layers.dense(gender_embed_layer, embed_dim, name = "gender_fc_layer", activation=tf.nn.relu)
        age_fc_layer = tf.layers.dense(age_embed_layer, embed_dim, name ="age_fc_layer", activation=tf.nn.relu)
        job_fc_layer = tf.layers.dense(job_embed_layer, embed_dim, name = "job_fc_layer", activation=tf.nn.relu)
        
        #第二层全连接
        user_combine_layer = tf.concat([uid_fc_layer, gender_fc_layer, age_fc_layer, job_fc_layer], 2)  #(?, 1, 128)
        user_combine_layer = tf.contrib.layers.fully_connected(user_combine_layer, 200, tf.tanh)  #(?, 1, 200)
    
        user_combine_layer_flat = tf.reshape(user_combine_layer, [-1, 200])
    return user_combine_layer, user_combine_layer_flat
定义Movie ID的嵌入矩阵
def get_movie_id_embed_layer(movie_id):
    with tf.name_scope("movie_embedding"):
        movie_id_embed_matrix = tf.Variable(tf.random_uniform([movie_id_max, embed_dim], -1, 1), name = "movie_id_embed_matrix")
        movie_id_embed_layer = tf.nn.embedding_lookup(movie_id_embed_matrix, movie_id, name = "movie_id_embed_layer")
    return movie_id_embed_layer
对电影类型的多个嵌入向量做加和
def get_movie_categories_layers(movie_categories):
    with tf.name_scope("movie_categories_layers"):
        movie_categories_embed_matrix = tf.Variable(tf.random_uniform([movie_categories_max, embed_dim], -1, 1), name = "movie_categories_embed_matrix")
        movie_categories_embed_layer = tf.nn.embedding_lookup(movie_categories_embed_matrix, movie_categories, name = "movie_categories_embed_layer")
        if combiner == "sum":
            movie_categories_embed_layer = tf.reduce_sum(movie_categories_embed_layer, axis=1, keep_dims=True)
    #     elif combiner == "mean":

    return movie_categories_embed_layer
Movie Title的文本卷积网络实现
def get_movie_cnn_layer(movie_titles):
    #从嵌入矩阵中得到电影名对应的各个单词的嵌入向量
    with tf.name_scope("movie_embedding"):
        movie_title_embed_matrix = tf.Variable(tf.random_uniform([movie_title_ma
  • 6
    点赞
  • 71
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
知识图谱和卷积神经网络CNN)结合起来的推荐系统设计与实现,是指利用知识图谱的结构化数据和CNN的深度学习能力,为用户提供更加精准和个性化的推荐服务。 首先,知识图谱是一种用图形结构表示知识的方法,其中实体和实体之间的关系被清晰地建模。通过知识图谱,我们可以更好地理解实体之间的相关性和语义信息。在推荐系统中,知识图谱可以用来表示用户、商品以及它们之间的关系,从而为推荐算法提供更加丰富的信息。 其次,卷积神经网络是一种深度学习模型,特别擅长于处理图像数据。在推荐系统中,CNN可以用来学习用户和商品的特征表示,从而在推荐过程中更好地捕捉用户的偏好和商品的属性。通过CNN的特征提取能力,推荐系统可以更加准确地为用户匹配感兴趣的商品。 在基于知识图谱与CNN推荐系统设计与实现过程中,首先需要将知识图谱中的实体和关系转化为适合CNN处理的特征表示。然后,通过训练CNN模型来学习用户和商品的特征表示,以及它们之间的关系。最后,结合CNN学习到的特征表示和知识图谱中的结构化信息,在推荐过程中给出个性化的推荐结果。 基于知识图谱与CNN推荐系统设计与实现可以充分利用知识图谱的结构化信息和CNN的深度学习能力,为用户提供更加准确和个性化的推荐服务。这将极大地提高推荐系统的性能和用户体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值