Interior-point methods(内点法)学习笔记

最近在搞点云处理的项目,其中对于拉普拉斯图的相关处理中,使用到了内点法进行优化,于是开始着手学习。

部分内容转载自:https://blog.csdn.net/dymodi/article/details/46441783

1. 问题描述:(障碍函数法)

内点法用于求解带有约束的优化命题。

f0为优化目标函数,fi{i=1,...,m}(二阶可导的凸函数)以及Ax=b为约束函数。

存在最优解,此时,有这样一对对偶变量, 满足KKT条件:(这里完全不懂

不等式使得求解困难,因此障碍函数法(内点法的一种)在原始的目标函数中引入一个障碍函数,或者惩罚函数,来代替约束条件中的不等式约束,这样,命题1就变成了:

函数应该满足的条件,当没有违反约束时,函数值为0,违反约束,函数值为正无穷,如图红色虚线所示:

红色虚线这个函数在某些点上是不可导的,因此并不适用。使用一个对数函数来拟合:

优化问题被转化为:

定义如下对数障碍:

命题变为:

2. Central Path

针对t > 0值,定义x*(t)为相应优化命题的解。那么,central path就是指所有点x*(t), t > 0的集合,其中的点被称为central points。central path上的点满足如下的充分必要条件,首先x*(t)都是严格可行的,即:

我们可以从对偶变量的角度进一步研究上式,给等号两边都乘以1/t, 我们有:

我们发现如果令

(8)

就取得了与2式中的第一个等式基本一致的结果。也就是说,x*(t)能最小化拉格朗日函数

是原命题中的一组可行的对偶变量,其实乐意理解为能使拉格朗日函数到数为0的就是对偶变量

那么此时,对偶命题的目标函数值为:

上述等式为(8)式带入的结果

我们记原命题(1)的目标函数的最小值为p*,那么由优化命题的对偶理论可知

,原命题与对偶命题的差记录为

被称为对偶间隙。

这里给一个算法框架:

Barrier Method:

3. 牛顿法求极值(针对Barrier Method的第一步)

在文章Convex Optimization中,介绍了如何利用牛顿法解Barrier Method的第一步解的问题。

问题描述:

使用二阶泰勒展开,该优化问题转换为:

二阶极小化问题:

定义为x的Newton step.(我的理解是更新步长,论文原文解释见下),

w为相伴最优对偶变量

给出一个最优条件下的线性逼近:

通过对x的线性拟合替换第二个方程的梯度项,以获得新的方程:

算法:

 

 

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿老甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值