《机器学习实战》学习笔记第三章 —— 决策树之ID3、C4.5算法

 

 

主要内容:

一.决策树模型

二.信息与熵

三.信息增益与ID3算法

四.信息增益比与C4.5算法

五.决策树的剪枝

 

 

一.决策树模型

1.所谓决策树,就是根据实例的特征对实例进行划分的树形结构。其中有两种节点:内节点表示一个特征,叶子结点表示一个类(或称为标签)。

2.在决策树中,从根节点开始,对实例的所有特征进行测试,根据测试结果,选择最合适的特征作为依据,将实例分配到其子节点上;此时,每一个子节点都对应着该特征(即父节点上的特征)的一个取值。之后一直递归下去,直到所有节点上所有实例的类都一样、或者特征已经用完。

3.决策树实际上就是一个“if-then”决策模型,其构造过程可用以下伪代码表示:

4.如何寻找划分数据的“最好特征”呢?

根据个人的经验,是选择使得划分前后方差减少得多的那一特征,因为方差越大不确定性越强,信息量就越大。以不确定性最强的那一特征进行划分数据,那么划分之后,不确定性就弱了很多了,即确定性就强了。当然这是个人的直觉,解决这一问题还需要引入信息量中的“熵”和“信息增益”。

5.待解决的疑问:为什么决策树的ID3、C4.5算法使用熵而不是方差来度量信息的不确定性呢?

 

 

二.熵

1.在信息论中,如果X为一个随机变量,xi为其中的一个值,那么xi的信息定义为:,其中p(xi)是随机变量X出现xi的概率。

可知:熵就是信息的期望值。

2.由定义可知,熵只依赖于X的分布,而与X的取值无关,因此将X的熵几座H(p):

3.混淆点:在开始的时候,思想一直在“特征(即X)的熵”和“标签(即Y)的熵”之间游荡,而且自己都没发现,所以就越想越混乱,后来搞清了,是:被X划分后,Y的熵。

 

 

三.信息增益与ID3算法

1.以下是“条件熵”、“经验熵”、“经验条件熵”的定义:

2.以下是信息增益的定义:

3.信息增益,简单而言,就是划分前后熵的差值。可知在构造决策树的过程中,当选择使得数据划分后信息增益最大的那一特征。

4.ID3算法就是以“信息增益”为基础的决策树构造算法,具体如下:

(其中阈值ε用于预剪枝)

Python代码(没有剪枝):

  1 # coding:utf-8
  2 '''
  3 Created on Oct 12, 2010
  4 Decision Tree Source Code for Machine Learning in Action Ch. 3
  5 @author: Peter Harrington
  6 '''
  7 from math import log
  8 import operator
  9 
 10 def createDataSet():
 11     dataSet = [[1, 1, 'yes'],
 12                [1, 1, 'yes'],
 13                [1, 0, 'no'],
 14                [0, 1, 'no'],
 15                [0, 1, 'no']]
 16     labels = ['no surfacing' ,'flippers']
 17     # change to discrete values
 18     return dataSet, labels
 19 
 20 '''dataSet为二维列表'''
 21 def calcShannonEnt(dataSet):  # 计算熵
 22     numEntries = len(dataSet)
 23     labelCounts = {}  # 统计每个标签出现的次数
 24     for featVec in dataSet:  # the the number of unique elements and their occurance
 25         currentLabel = featVec[-1]  # 获得标签
 26         if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
 27         labelCounts[currentLabel] += 1  #累加
 28     shannonEnt = 0.0
 29     for key in labelCounts: #枚举每个标签,计算熵
 30         prob = float(labelCounts[key] ) /numEntries     #概率
 31         shannonEnt -= prob * log(prob ,2)  #
 32     return shannonEnt
 33 
 34 '''axis为划分数据集的特征,axis为索引;value为需要返回的特征的值。'''
 35 def splitDataSet(dataSet, axis, value):
 36     retDataSet = []
 37     for featVec in dataSet:
 38         if featVec[axis] == value:  #如果为要返回的那一类,则记录下来。不用在记录axis特征上的值
 39             reducedFeatVec = featVec[:axis]  # chop out axis used for splitting
 40             reducedFeatVec.extend(featVec[axis+1:])
 41             retDataSet.append(reducedFeatVec)
 42     return retDataSet
 43 
 44 def chooseBestFeatureToSplit(dataSet):  #选择划分数据集获得的信息增益最大的特征,返回其下标
 45     numFeatures = len(dataSet[0]) - 1  # 获取特征树
 46     baseEntropy = calcShannonEnt(dataSet)       #划分前的熵
 47     bestInfoGain = 0.0; bestFeature = -1        #两个变量用于当前的最大信息增益以及此时的特征
 48     for i in range(numFeatures):  # 枚举每一个特征(的下标)
 49         featList = [example[i] for example in dataSet  ]  # 获取该特征的所有值
 50         uniqueVals = set(featList)  # 去重
 51         newEntropy = 0.0    #新的熵
 52         for value in uniqueVals:    #计算新的熵
 53             subDataSet = splitDataSet(dataSet, i, value)
 54             prob = len(subDataSet ) /float(len(dataSet))
 55             newEntropy += prob * calcShannonEnt(subDataSet)
 56         infoGain = baseEntropy - newEntropy  # 计算信息增益
 57         if (infoGain > bestInfoGain):  # 更新
 58             bestInfoGain = infoGain
 59             bestFeature = i
 60     return  bestFeature   # returns an integer
 61 
 62 def majorityCnt(classList):     #获取当前数据集的最多数类别,用于当所有特征都划分玩之后仍不能区分所有类别
 63     classCount ={}
 64     for vote in classList:
 65         if vote not in classCount.keys(): classCount[vote] = 0
 66         classCount[vote] += 1
 67     sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
 68     return sortedClassCount[0][0]
 69 
 70 '''dataSet为二维列表,labels为一维列表。返回的是一个嵌套字典以表示树形结构'''
 71 def createTree(dataSet ,labels):        #递归构造划分树
 72     classList = [example[-1] for example in dataSet]    #获取所有标签
 73     if classList.count(classList[0]) == len(classList):     #当列表中所有元素的标签都一样,直接返回
 74         return classList[0]
 75     if len(dataSet[0]) == 1: #当所有标签都划分完,用数量最多的标签去代表这个列表的标签
 76         return majorityCnt(classList)
 77     bestFeatIndex = chooseBestFeatureToSplit(dataSet)    #获取最佳的划分特征的下标
 78     bestFeat = labels[bestFeatIndex]            #获取最佳的划分特征(主要是为了构造树形字典)
 79     myTree = {bestFeat :{}}        #构造当前的树
 80     del(labels[bestFeatIndex])       #删除最佳特征
 81     featValues = [example[bestFeatIndex] for example in dataSet]     #获取最佳特征的所有值
 82     uniqueVals = set(featValues)        #去重
 83     for value in uniqueVals:
 84         subLabels = labels[:]  # 复制多一份特征列表,因为在构造的时候会改变其值。
 85         myTree[bestFeat][value] = createTree(splitDataSet(dataSet, bestFeatIndex, value) ,subLabels)    #获取每一个分支
 86     return myTree
 87 
 88 def classify(inputTree ,featLabels ,testVec):   #利用划分树进行分类
 89     firstStr = inputTree.keys()[0]  #获取划分当前节点的特征
 90     secondDict = inputTree[firstStr]    #获取子树,为一个嵌套字典
 91     featIndex = featLabels.index(firstStr)  #获取划分特征的在特征列表的下标
 92     value = testVec[featIndex]            #获取输入数据在该特征下的值
 93     branchTree = secondDict[value]      #获取与该值相对应的分支
 94     if isinstance(branchTree, dict):    #非叶子结点,则继续递归
 95         classLabel = classify(branchTree, featLabels, testVec)
 96     else: classLabel = branchTree       #到达叶子结点,则标签已经确定,直接返回
 97     return classLabel
 98 
 99 def storeTree(inputTree ,filename):     #将决策树保存到磁盘中
100     import pickle
101     fw = open(filename ,'w')
102     pickle.dump(inputTree ,fw)
103     fw.close()
104 
105 def grabTree(filename):     #从磁盘中读取决策树
106     import pickle
107     fr = open(filename)
108     return pickle.load(fr)
109 
110 
111 dataSet, labels = createDataSet()
112 myTree = createTree(dataSet,labels)
113 print myTree
114 """
115     输出如下:
116     {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
117 """
View Code

 

 

四.信息增益比与C4.5算法

1.“信息增益”比好好的,为什么又要多出一个“信息增益比”呢?

因为:以信息增益作为选择特征进行数据划分的依据,存在偏向于选择取值比较多的特征的问题,而“信息增益比”可以校正这一问题。

2.怎么解释这个式子呢?

(截图来自:决策树--信息增益,信息增益比,Geni指数的理解 )

3.C4.5算法就是以“信息增益比”为基础的决策树构造算法。其算法步骤直接将“信息增益”改为“信息增益比”即可。

 

 

五.决策树的剪枝

1.直接依据训练数据一直往下构造决策树,虽然能很好地适应训练数据本身,但却容易出现“过拟合”。为此需要做适当的剪枝,其中有“预剪枝”和“后剪枝”。

2.预剪枝:如上述的ID3算法通过设置合适的阈值ε来限制“生枝”,即假如某个结点的最大信息增益小于阈值,就停止继续划分,而使其成为叶子结点。然而听说这个阈值ε似乎不太好调。

3.后剪枝,即在决策树生成之后,再作适当的剪枝。有关后剪枝的数学解释:

对于5.11式:类似于带正则项的损失函数,可知第二项就是正则项,第一项就是不带正则项的损失函数,但是要怎么理解它呢?

《决策树损失函数对Nt的理解》可很好地解释其所代表的含义。

4.决策树剪枝部分的算法如下:

 

转载于:https://www.cnblogs.com/DOLFAMINGO/p/9432762.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值