【论文+代码】融合小层信息约束和神经随机森林NRF的测井曲线生成模型研究

目录

1. 关键词

2.研究背景与目的

3.文章亮点

(1) 加入地层分层信息为物理约束

(2)融合NN和RF优势

(3)小波去噪

4.结果展示

(1) 预测不同测井曲线的结果

(2) 有无物理约束的结果对比

(3)不同预测模型对比

5.工作流程

6.方法模型

神经随机森林(NRF)

7. 论文代码资源


✅作者简介:双一流博士,人工智能领域学习者,深耕机器学习,交叉学科实践者。已发表SCI1/区top论文10+,发明专利10+。可提供论文服务,代码复现,专利思路和指导,提供科研小工具,分享科研经验,欢迎交流!
📌个人主页: https://blog.csdn.net/allein_STR?spm=1011.2559.3001.5343
📞联系博主:博文留言+主页底部联系方式+WeChat: boboangang
📙本文内容:【论文+代码】融合小层信息约束和神经随机森林NRF的测井曲线生成模型研究

1. 关键词

测井曲线生成,小层划分约束,神经随机森林NRF

2.研究背景与目的

研究背景:

(1)在油气开发和勘探过程中,测井曲线为地层特征描述和评估提供了岩石物理信息。例如,可以使用各种测井曲线估算渗透率、孔隙度和饱和度。因此,完整的测井曲线对于准确表征非常规油气层非常必要。

(2)然而,由于数据保存不当和其他人为因素,老井的测井记录往往不完整或缺失。在一些新井中,由于测井条件具有挑战性、工具问题、钻井问题以及高昂的勘探成本,测井曲线无法测量。因此,重建缺失测井曲线的能力非常重要。

(3)由于储层的复杂性和异质性,现有的多元回归法等技术无法准确反映各种测井曲线之间的非线性关系,导致结果不准确。

(4)很少有研究探讨地层细分信息对测井曲线的影响。然而,地层细分信息对储层描述和油气田勘探至关重要,有助于分析储层特征和指导油气田开发

目的:

    基于物理信息(地层细分信息),结合了 NN 算法和 RF 算法的优势,构建了 NRF模型,并生成缺失测井曲线。

3.文章亮点

(1) 加入地层分层信息为物理约束

(2)融合NN和RF优势

  • NN 是揭示数据间复杂非线性关系的有用工具,从理论上讲,NN 可以普遍逼近任何复杂的解决方案,且神经网络具有鲁棒性和容错性。但是,神经网络缺乏可解释性,并且有许多超参数需要调整,非常耗时。

  •  RF 是一种基于决策树的集合方法,与 NN 相比,RF 需要调整的超参数更少,预测精度更高。但该模型在小数据集中容易出现过度拟合问题。

  • NRF 模型融合NN与RF优点,并不是简单地结合这两种模型,该方法将随机回归树表示为具有特定连接权重的 NN。这种树型网络减少了超参数的数量和过度拟合的可能性,从而形成了一种稳健、容错和耗时较少的方法。

(3)小波去噪

4.结果展示

(1) 预测不同测井曲线的结果

(2) 有无物理约束的结果对比

(3)不同预测模型对比

5.工作流程

6.方法模型

神经随机森林(NRF)

7. 论文代码资源

原文链接:

https://doi.org/10.1016/j.petrol.2022.111086

代码资源: 联系博主获取

END


本篇到这里就结束了。想学习更多Python、人工智能、交叉学科相关知识,点击关注博主,带你从基础到进阶。若有需要提供科研指导、代码支持,资源获取或者付费咨询的伙伴们,可以添加博主个人联系方式!

码字不易,希望大家可以点赞+收藏+关注+评论!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

allein_STR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值