POJ--3662[Telephone Lines] 二分答案+缩点

本文介绍了一种利用二分答案、缩点和BFS算法解决无向图中经过路径最长大于等于给定值K的最小值问题的方法。通过先二分查找可能的路径长度,然后对剩余图进行缩点处理,最终通过BFS判断路径长度是否满足条件。代码实现简洁高效。
摘要由CSDN通过智能技术生成
 

题目大意:

给出一个无向图n个点,p条边,给一个数k,表示你可以把此图中任意的k条边的长度变成0.求出从1到n,经过的路径中最长的那一段路的长度的最小值!

 

思路:二分答案+缩点+BFS
二分最长的距离然后再剩余的图上缩点,再把那些删掉的边加到缩点后的图中,最后BFS判定最少的步数是否<=K;

 

 

PS:代码写的有点乱

 

 

源代码:

/*二分+缩点*/
/*AC代码:94ms*/
#include <iostream>
#include <cstdio>
#include <memory.h>
#include <queue>
#include <algorithm>
#define MAXN 1005
#define INF 1e8
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
using namespace std;
struct Node
{
	int u,step;
};
struct edge
{
	int i,u,v,w,next;
}E[5*10000],sE[5*10000],wE[5*10000];
int head[MAXN],ecnt;
int shead[MAXN],secnt;
int whead[MAXN],wecnt;
int N,P,K,Max,Min;
bool vis[MAXN];
int Belong[MAXN],scc;
int len;
void Insert(int u,int v,int w,edge E[],int &ecnt,int head[])
{
	E[ecnt].u=u;
	E[ecnt].v=v;
	E[ecnt].w=w;
	E[ecnt].next=head[u];
	head[u]=ecnt++;
}
queue<Node>Q;
void BFS(int s,int e)
{
	int i,x;
	Node u,v;
	while(!Q.empty()) Q.pop();
	memset(vis,false,sizeof(vis));
	vis[s]=true;
	u.u=s;u.step=0;
	Q.push(u);
	while(!Q.empty())
	{
		u=Q.front();Q.pop();
		for(i=head[u.u];i!=-1;i=E[i].next)
		{
			x=E[i].v;
			if(!vis[x])
			{
				vis[x]=true;
				v.u=x;v.step=u.step+1;
				if(x==e)
				{len=v.step;break;}
				Q.push(v);
			}
		} 
	}
}
void Init()
{
	int i,u,v,w;
	memset(head,-1,sizeof(head));ecnt=0;
	Max=0;Min=INF;
	for(i=1;i<=P;i++)
	{
		scanf("%d%d%d",&u,&v,&w);
		Max=max(Max,w);
		Min=min(Min,w);
		Insert(u,v,w,E,ecnt,head);
		Insert(v,u,w,E,ecnt,head);
	}
}
void dfs(int u,int id)//缩点
{
	int i,v;
	vis[u]=true;
	Belong[u]=id;
	for(i=shead[u];i!=-1;i=sE[i].next)
	{
		v=sE[i].v;
		if(!vis[v])
			dfs(v,id);
	}
}
bool bfs(int s,int e)//对缩点后的图bfs
{
	int i,x;
	Node u,v;
	while(!Q.empty()) Q.pop();
	memset(vis,false,sizeof(vis));
	vis[s]=true;
	u.u=s;u.step=0;
	Q.push(u);
	while(!Q.empty())
	{
		u=Q.front();Q.pop();
		if(u.step>K) return false;
		if(u.u==e) return true;
		for(i=whead[u.u];i!=-1;i=wE[i].next)
		{
			x=wE[i].v;
			if(!vis[x])
			{
				vis[x]=true;
				v.u=x;v.step=u.step+1;
				Q.push(v);
			}
		} 
	}
	return false;
}
bool Judge(int mid)
{
	int i,u,v,w;
	memset(shead,-1,sizeof(shead));secnt=0;
	for(i=0;i<ecnt;i+=2)
	{
		u=E[i].u;v=E[i].v;w=E[i].w;
		if(E[i].w<=mid)
		{
			Insert(u,v,w,sE,secnt,shead);
			Insert(v,u,w,sE,secnt,shead);
		}
	}
	memset(vis,false,sizeof(vis));
	scc=0;
	for(i=1;i<=N;i++)
	{
		if(!vis[i])
			dfs(i,++scc);
	}
	if(Belong[1]==Belong[N]) return true;
	memset(whead,-1,sizeof(whead));wecnt=0;
	for(i=0;i<ecnt;i+=2)
	{
		u=E[i].u;v=E[i].v;w=E[i].w;
		if(w>mid&&Belong[u]!=Belong[v])
		{
			Insert(Belong[u],Belong[v],w,wE,wecnt,whead);
			Insert(Belong[v],Belong[u],w,wE,wecnt,whead);
		}
	}
	return bfs(Belong[1],Belong[N]);
}
void Solve()
{
	int l,r,mid;
	len=-1;
	BFS(1,N);
	if(len==-1)
	{printf("-1\n");return;}
	if(len<=K)
	{printf("0\n");return;}
	l=Min;r=Max;
	while(l!=r)
	{
		mid=(l+r)>>1;
		if(Judge(mid))
			r=mid;
		else
			l=mid+1;
	}
	printf("%d\n",l);
}
int main()
{
	while(scanf("%d%d%d",&N,&P,&K)!=EOF)
	{
		Init();
		Solve();
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__简言

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值