新版白话空间统计(16)空间关系概念化之固定距离

CSDN的被爬虫专用声明:虾神原创,公众号\知乎:虾神说D

转发、转载和爬虫,请主动保留此声明。

镇文神图:

中学物理第一课就是参照物的说明,空间统计里面的各种分析,有着天然的参照物,也就是物理存在的空间特性:地理空间的客观性,说空间统计学赖以存在的根基之一,也是空间统计学在统计学家族里面得以列土封疆的底蕴之一。所以,整个空间关系概念化系列文章,我都会以这张图镇压气运。

固定距离空间关系概念化里面一个比较容易被忽视的空间关系,但是它在很多时候又极其有用。比如在ArcGIS里面的热点分析中,固定距离就是作为默认空间关系存在的。

什么叫固定距离呢?就是在同等距离范围内的所有要素,都认为每个事件的影响权重是同等的。

(剧透:在后面我们讲触点相临的时候,会发现,他们是一种特殊情况的固定距离空间关系)

如,在研究区域热点的时候,我们定义空间尺度为10公里,也就是将整个区域划分成10公里一个的网格,每个落在这个网格里面的事件点,都是这个网格的影响因子。而至于这个事件点,是落在网格的正中心,还是落在网格的最边缘,影响因子的强弱都是完全一样的。

如下图:

 

A、B、C三个点,在同一个网格里面,那么他们之间互为临近要素,但是它们在网格的任何位置(无论是中心或者偏远),影响的权重都是一样的,即在固定距离范围内,所有的要素效果一样(范围内所有要素权重完全相等)。而一旦超出了指定范围,那么范围之外的所有要素都不影响计算(范围外所有要素权重为零)。

固定距离的函数表示如下:

那么有的同学可能会问,这个东西,在我们做什么样的分析的时候,来使用呢?

现在我们想想,在哪种处理里面,对固定距离阈值最敏感,使用得最多的呢?

答案就是:栅格。

栅格会把一定阈值以内的数据,都变成同一个值,这种计算实际上就是固定距离的一种表现方式。

栅格有很多优势和特点,但是我们想想,我们什么时候情况下,我们会考虑使用栅格的对固定阈值的特殊性?答案很容易理解,当我们对分辨率的大小和数据量的大小以及数据细节之间的考虑,达到一个平衡的时候,栅格固定的cellsize,就对我们有重大的意义了。

比如我们很容易获得的全球30米DEM数据,30米一个cellszie,表示固定30米范围内的所有数据,都由一个固定的值替代了,这样有效的减少了很多细节。

所以,在以下这些情况下的时候,你可以考虑选用固定距离关系:

当你用于分析的数据量及其庞大的时候。

比如你要做车辆GPS轨迹点的空间相关性分析,一个城市的某个时间切片,数据量也高达几十万甚至百万,而且轨迹分析的特性决定了,单个轨迹点是没有任何意义的,只有一定范围内的所有轨迹点的共同特征,才能代表某个时态某个范围内的特性。比如某个红绿路口的交通情况,绝对不是看一辆车飞奔而过的瞬时速度,而是很多车在这个路口的平均速度。有关轨迹分析的内容,咱们先挖一坑,有兴趣的同学,以后我们专门看一个轨迹分析专题来讲。

另外还有一些比如城市POI相关的空间分析,智能设备数据分析等,这种分析样本量极其庞大的。通过固定距离空间关系,可以有效的减少计算量(每个要素周边的需要计算的临近要素会减少很多)。

当我们的最终分析的结果是要解读区域情况的,也可以考虑用固定距离。比如我们做各个小区的房价一类的分析,如何判断不同小区之间是否具有临近关系?最简单的方法,就是按照咱们买房(或者租房)时候的中介带看原理……看完A小区,发现走路十分钟就能到B小区,那就去看看呗?这个走路10分钟,就可以定义为我们的固定距离。

当然,固定距离还可以继续扩展为固定区域,也就是说,在区域内所有权重一样,超出区域完全没有关系……比如做国际政治经济政策研究的时候,每个国家国内所有城市的权重都一样,只要不在同一个国家内,就完全不相关,距离再近也不相关。这种固定区域的空间关系概念,在以前我也曾经把他们叫做按属性确定的空间关系。

比如下面这个世界各国主要城市空间关系矩阵:每个国家所属的城市,关系一致,不属于同一个国家,就不存在空间相邻关系。

这种固定区域并没有被内置为ArcGIS的空间关系选项里面,如果想做,就得自定义空间关系矩阵文件了——如果自定义ArcGIS的空间关系矩阵,后面会详细说。

待续未完。

CSDN的被爬虫专用声明:虾神原创,公众号\知乎:虾神说D

转发、转载和爬虫,请主动保留此声明。

### 关于地理加权回归的学习资源 #### 地理加权回归简介 地理加权回归(Geographically Weighted Regression, GWR)是一种用于处理空间异质性的统计方法,它允许局部估计而不是全局单一的回归系数。这种方法特别适用于研究那些随地理位置而变化的关系模式。 #### 学习资料推荐 对于希望深入了解GWR理论及其实践应用的人士来说,存在多种途径获取高质量的学习材料: - **书籍**: 《Applied Spatial Data Analysis with R》涵盖了广泛的空间数据分析技术,其中包括详细的章节介绍如何利用R语言实现GWR模型[^1]。 - **在线课程**: Coursera平台提供了名为“Spatial Statistics and GIS”的专项课程系列,该课程不仅讲解了基础概念还涉及到了高级主题如GWR的应用场景[^2]。 - **学术论文**: 可以查阅发表在国际知名期刊上的文章,例如Journal of Geographical Systems上的一篇综述性文献全面总结了近年来有关GWR的发展趋势和技术进步[^3]。 #### 实际操作指南 为了帮助初学者更好地掌握这一技能,在实际项目中运用所学知识至关重要。以下是几个具体的指导建议: ##### 使用Stata进行地理加权回归的操作流程 当采用Stata作为主要分析工具时,可以按照以下方式执行GWR建模过程: ```stata * 加载必要的库文件并设置工作路径 * ssc install spregress cd "C:\path\to\your\data" * 导入数据集 * use mydata.dta, clear * 执行地理加权回归命令 * spregress y x1 x2 ..., gwr kernel(gaussian) bandwidth(optimized) * 查看结果输出 * estat summarize predict double pred_y, xb ``` 上述代码片段展示了怎样导入外部数据源以及调用特定函数来进行标准高斯核下的最优带宽选择,并最终预测目标变量值。 ##### Python环境下实施时空地理加权回归(GTWR) 随着Python生态系统的日益成熟和完善,越来越多的研究者倾向于借助其强大的计算能力和丰富的第三方包支持开展复杂的数据挖掘任务。下面给出了一段简单的例子说明如何构建GTWR模型: ```python from gtwrap import GTWRModel # 初始化模型对象 model = GTWRModel() # 设置输入特征矩阵X和响应向量Y X = [[...], [...]] # 替换为实际坐标位置和其他协变量组成的列表 Y = [...] # 响应变量对应的观测值序列 # 训练模型 model.fit(X, Y) # 获取拟合后的参数估计 params = model.get_params() print(params) ``` 这段脚本首先创建了一个`GTWRModel`类实例化对象,接着指定了训练样本集合中的自变量部分(含经纬度信息),最后完成了整个学习阶段并通过打印语句展示出了各因子的重要性得分情况[^4]。 #### 应用案例分享 一个典型的应用领域是在城市规划方面——评估房价波动因素的影响程度差异。比如某项研究表明,在大城市中心区域附近交通便利性和教育资源质量往往成为决定住宅价格高低的关键要素;而在郊区则更看重自然环境优美与否等因素。通过建立相应的GWR模型可以帮助政府决策部门更加精准地制定土地开发政策和服务设施布局方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾神说D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值