(7)Elasticsearch-基础语法-下(Term、Match、Keyword、Text)

目录

1.概念

1.1.term与match

1.2.text与keyword

2.Term + Text/Keyword

(1)term查询text字段

(2)term查询keyword字段

3.Match + Text/Keyword

(1)match查询text字段

(2)match查询keyword字段

4.Match - Match_phrase

5.Match - Multi_match

6.Query_String

7、实际案例参考



参考文章:Elasticsearch中 match、match_phrase、query_string和term的区别

1.概念

1.1.term与match

term是精确查询

match是模糊查询

1.2.text与keyword

ES更新到5版本后,取消了 string 数据类型,代替它的是 keyword 和 text 数据类型。

Text

Text 数据类型被用来索引长文本,比如说电子邮件的主体部分或者一款产品的介绍。这些文本会被分析,在建立索引前会将这些文本进行分词,转化为词的组合,建立索引。允许 ES来检索这些词语。text 数据类型不能用来排序和聚合

Keyword

Keyword 数据类型用来建立电子邮箱地址、姓名、邮政编码和标签等数据,不需要进行分词。可以被用来检索过滤、排序和聚合。keyword 类型字段只能用本身来进行检索。

注意:如果不像以上通过mapping 配置索引时,遇到字符串类型时候的字端,系统会默认为“text”类型。检索的时候对字符串进行分析。所以要想只通过字段本身来进行检索,还是需要按照上面把该字段改为“keyword”类型。

 

以下参考:Elasticsearch中 match、match_phrase、query_string和term的区别

2.Term + Text/Keyword

(1)term查询text字段

因为text字段会分词,而term不分词,所以term查询的条件必须是text字段分词后的某一个

(2)term查询keyword字段

 term不会分词。而keyword字段也不分词。需要完全匹配才可

 

3.Match + Text/Keyword

(1)match查询text字段

match分词,text也分词,只要match的分词结果和text的分词结果有相同的就匹配


Match查询会先对搜索词进行分词,分词完毕后再逐个对分词结果进行匹配,因此相比于term的精确搜索,match是分词匹配搜索,match搜索还有两个相似功能的变种,一个是match_phrase,一个是multi_match。

(2)match查询keyword字段

match会被分词,而keyword不会被分词,match的需要跟keyword的完全匹配可以

 

4.Match - Match_phrase

match_phrase的用法

主要知识点:

  • match_phrase的使用场景
  • match_phrase的用法
  • match_phrase的原理

一、什么是近似匹配

 match_phrase的使用场景

现假设有两个句子

1、java is my favourite programming language, and I also think spark is a very good big data system.

2、java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.

   

进行match query,query语法如下:

{
"query":{
   "match": {
   "content": "java spark"
}
}
}

match query进行搜索,只能搜索到包含java或spark的document,包含java和spark的doc都会被返回回来。现在假如说我们要实现以下三个需求:

1、java spark,就靠在一起,中间不能插入任何其他字符,就要搜索出来这种doc

2、java spark,但是要求,java和spark两个单词靠的越近,doc的分数越高,排名越靠前

3、我们搜索时,文档中必须包含java spark这两个文档,且他们之间的距离不能超过5,

要实现上述三个需求,用match做全文检索,是搞不定的,必须得用proximity match(近似匹配),proximity match分两种,短语匹配(phrase match)和近似匹配(proximity match)。这一讲,要学习的是phrase match,就是仅仅搜索出java和spark靠在一起的那些doc,比如有个doc,是java use'd spark,这就不是结果。

二、match_phrase的用法

  phrase match,就是要去将多个term作为一个短语,一起去搜索,只有包含这个短语的doc才会作为结果返回。match是只在包含其中任何一个分词就返回。

1、match语法:

GET /forum/article/_search

{

    "query": {

        "match": {

        "content": "java spark"

}

}

}

单单包含java的doc也返回了,不是我们想要的结果

2、改一个数据,将一个doc的content设置为恰巧包含java spark这个短语,以方便搜索

POST /forum/article/5/_update

{

"doc": {

"content": "spark is best big data solution based on scala ,an programming language similar to java spark"

}

}

   

3、match_phrase语法

   

GET /forum/article/_search

{

"query": {

"match_phrase": {

"content": "java spark"

}

}

}

   

结果只返回了最后我们修改的那个doc,只包含java或spark的doc不会返回

   

三、match_phrase的原理

   原理不想了解的童鞋可以忽略。

1、理解term position

es分词器在分词做倒排索引时,会记录下每个分词在对应的doc中的位置(position)

比如有下面两个doc>

doc1:hello world, java spark                

doc2:hi, spark java                                

做倒排索引时:

hello                 doc1(0)                

wolrd                doc1(1)

java                   doc1(2)  doc2(2)

spark                doc1(3)  doc2(1)

()中表示位置。可以通过以下语句进行查看。

   

GET _analyze

{

"text": "hello world, java spark",

"analyzer": "standard"

}

2、match_phrase的基本原理

   

match_phrase执行过程:

1.如match搜索一样进行分词,

2.对分词后的单词到field中去进行搜索。这一步返回每个单词对应的doc,并返回这些单词在对应的doc中的位置,

3.对返回的doc进行第一步的筛选,找到每个单词都在同一个field的doc。

4.对第3步进行筛选后的doc进行再一次的筛选,选回位置符合要求的doc。比如,对于match_phrase,就是找到后一个单词的位置比前一个单词的位置大1。

5.proximity match原理一样,只是第四位对位置进行筛选时的方法不同。


math_phrase 集合slop

GET /my_index/my_type/_search
{
    "query": {
        "match_phrase": {
            "title": {
                "query": "quick fox",
                "slop":  1
            }
        }
    }
}

slop参数告诉match_phrase查询词条能够相隔多远时仍然将文档视为匹配。相隔多远的意思是,你需要移动一个词条多少次来让查询和文档匹配。

5.Match - Multi_match

参考:https://www.elastic.co/guide/cn/elasticsearch/guide/current/multi-match-query.html

 

 

6.Query_String

和match_phrase区别的是,query_string查询text类型字段,不需要连续,顺序还可以调换

7、实际案例参考

GET /sw_ws_gd/_search
{
  "from": 0,
  "size": 500,
  "query": {
    "bool": {
      "must": [
        {
          "bool": {
            "must": [
              {
                "bool": {
                  "should": [
                    {
                      "bool": {
                        "must": [
                          {
                            "bool": {
                              "should": [
                                {
                                  "multi_match": {
                                    "query": "中介",
                                    "fields": [
                                      "bgbc_content^2.0",
                                      "bycm_content^2.0",
                                      "case_code^2.0",
                                      "case_title^2.0",
                                      "dsrxx_content^2.0",
                                      "flyj^2.0",
                                      "jbxx_content^2.0",
                                      "sljg_content^2.0",
                                      "wsnr^2.0",
                                      "ygsc_content^2.0"
                                    ],
                                    "type": "phrase",
                                    "operator": "OR",
                                    "slop": 0,
                                    "prefix_length": 0,
                                    "max_expansions": 50,
                                    "minimum_should_match": "40%",
                                    "tie_breaker": 0.3,
                                    "zero_terms_query": "NONE",
                                    "auto_generate_synonyms_phrase_query": true,
                                    "fuzzy_transpositions": true,
                                    "boost": 1
                                  }
                                },
                                {
                                  "multi_match": {
                                    "query": "å±…é—´",
                                    "fields": [
                                      "bgbc_content^1.0",
                                      "bycm_content^1.0",
                                      "case_code^1.0",
                                      "case_title^1.0",
                                      "dsrxx_content^1.0",
                                      "flyj^1.0",
                                      "jbxx_content^1.0",
                                      "sljg_content^1.0",
                                      "wsnr^1.0",
                                      "ygsc_content^1.0"
                                    ],
                                    "type": "phrase",
                                    "operator": "OR",
                                    "slop": 0,
                                    "prefix_length": 0,
                                    "max_expansions": 50,
                                    "minimum_should_match": "40%",
                                    "tie_breaker": 0.3,
                                    "zero_terms_query": "NONE",
                                    "auto_generate_synonyms_phrase_query": true,
                                    "fuzzy_transpositions": true,
                                    "boost": 1
                                  }
                                }
                              ],
                              "adjust_pure_negative": true,
                              "boost": 1
                            }
                          }
                        ],
                        "adjust_pure_negative": true,
                        "boost": 1
                      }
                    }
                  ],
                  "adjust_pure_negative": true,
                  "boost": 1
                }
              }
            ],
            "adjust_pure_negative": true,
            "boost": 1
          }
        },
        {
          "bool": {
            "adjust_pure_negative": true,
            "boost": 1
          }
        }
      ],
      "filter": [
        {
          "bool": {
            "adjust_pure_negative": true,
            "boost": 1
          }
        }
      ],
      "adjust_pure_negative": true,
      "boost": 1
    }
  },
  "_source": {
    "includes": [
      "case_code",
      "case_title"
    ],
    "excludes": []
  },
  "track_total_hits": 2147483647
}

 

### Elasticsearch 中 `match` 和 `term` 查询的区别 #### 1. 数据处理方式的不同 `term` 查询用于查找确切的术语,它不会对输入数据进行分析。因此,在索引阶段存储的数据是什么样,查询时就需要完全匹配该形式才能找到结果[^1]。相比之下,`match` 查询会在执行前自动分析所提供的文本内容。这种特性使得它可以针对已经过分析并存储为多个标记(tokens)的字段进行有效搜索[^4]。 #### 2. 字段类型的适用性差异 对于像 keyword 这样的未被分词器处理过的精确值字段来说,通常推荐使用 `term` 查询来实现精准检索需求;而对于 text 类型这样的会被默认标准分词器或其他指定分词策略拆分成若干子项后再存入倒排索引中的情况,则更适合采用能够理解这些分割单元之间关系并通过相应逻辑组合起来形成最终表达式的 `match` 或其他高级查询方法[^5]。 #### 3. 实际应用案例对比 假设有一个包含产品名称及其描述信息的商品数据库,并且我们希望找出所有名字正好等于 “Apple Watch Series 8”的记录: 如果直接运用未经修改的标准配置下的 `term` 操作符去尝试完成上述任务的话可能会遇到困难——除非原始字符串已经被事先设置成了不可再进一步分解的形式(即定义为了keyword),否则由于自然语言处理过程中不可避免的存在诸如大小写转换、去除停用词等一系列预处理动作的影响,“apple watch series 8” 可能早已被打散成单独几个独立的部分分别对应不同的词条位置了,此时单纯依靠简单的字面意义比较显然无法达到预期效果[^3]。 然而当我们改用支持内置解析功能的 `match` 版本来重新构建相同的请求参数列表之后却可以轻松解决这个问题,因为它内部会先按照既定规则把目标串切分为合适的片段然后再逐一对照可能存在的候选项集合直至发现符合条件的对象为止。 ```json // Example of a term query (exact match on keywords) { "query": { "term": { "product_name.keyword": "Apple Watch Series 8" } } } // Example of a match query (analyzed search against texts) { "query": { "match": { "product_description": "smartwatch with health monitoring features" } } } ``` 以上两个例子展示了如何根据不同业务场景选择合适的方式来进行高效的信息定位操作。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值