基于Python的图像阈值化分割(迭代法)
1.阈值化分割原理
通过对图像的灰度直方图进行数学统计,选择一个或多个阈值将像素划分为若干类。一般情况下,当图像由灰度值相差较大的目标和背景组成时,如果目标区域内部像素灰度分布均匀一致,背景区域像素在另一个灰度级上也分布均匀,这时图像的灰度直方图会呈现出双峰特性。
在这种情况下,选取位于这两个峰值中间的谷底对应的灰度值T作为灰度阈值,将图像中各个像素的灰度值与这个阈值进行比较,根据比较的结果将图像中的像素划分到两个类中。像素灰度值大于阈值T的像素点归为一类,其余像素点归为另一类。经阈值化处理后的图像g(x,y)定义为:
其中f(x,y)为原图像,T为灰度阈值,g(x,y)为分割后产生的二值图像。
2.算法流程图
3.代码实现
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
#读入图片并转化为矩阵
img = plt.imread('2.jpg')
im = np.array(img)
# 矩阵大小
l = len(im)
w = len(im[0])
#求初始阈值
zmin = np.min(im)
zmax = np.max(im)
t0 = int((zmin+zmax)/2)
#初始化相关变量初始化
t1=0
res1=0
res2=0
s1=0
s2=0
#迭代法计算最佳阈值
while abs(t0-t1)>0:
for i in range(0,l-1):
for j in range(0,w-1):
if im[i,j]<t0:
res1=res1+im[i,j]
s1=s1+1
elif im[i,j]>t0:
res2=res2+im[i,j]
s2=s2+1
avg1=res1/s1
avg2=res2/s2
res1 = 0
res2 = 0
s1 = 0
s2 = 0
t1 = t0 #旧阈值储存在t1中
t0=int((avg1+avg2)/2) #计算新阈值
#阈值化分割
#像素点灰度值小于最佳阈值t0用0填充,其余用255填充
im = np.where(im[...,:] < t0, 0, 255)
#绘制原图窗口
plt.figure()
plt.imshow(img , cmap='gray')
plt.title('original')
#绘制原图直方图并显示最佳阈值
plt.figure()
plt.hist(img.ravel(),256)
plt.title('hist')
plt.axvline(t0) #绘制最佳阈值分割线
plt.text(25, 6100, "Best Threshold:{}".format(t0), size = 15, alpha = 0.8)
#绘制阈值化分割后图像
plt.figure()
plt.imshow(Image.fromarray(im) , cmap='gray')
plt.title('new')
#绘制阈值化分割后图像的直方图
plt.figure()
plt.hist(im.ravel(),256)
plt.title('hist')
plt.show()
4.阈值化分割结果
原始图像
原始图像直方图
阈值化分割后图像
阈值化分割后图像直方图