- 博客(77)
- 收藏
- 关注
原创 最小二乘估计(3)
是正定的,与理论解一致,而式(8)需要三次矩阵求逆计算,因此计算复杂,需要占用更多的计算资源,但在多传感器状态融合估计中可以使融合公式具有统一形式,所以经常在状态融合估计方法中使用。定量描述估计的误差,估计方差是一个很关键的评价指标。本节给出几种最小二乘方法滤波增益和估计方差的求解方法,这些也是卡尔曼滤波器的理论基础。的公式中,式(10)是一个比较简单的表达式,但是数值计算问题可能导致。一般可以认为,所得的估计方差越小,估计方法就越好。,称其为滤波增益,将上式代入估计方差的定义,可以得到。
2024-08-18 16:17:29
1016
原创 最小二乘估计(2)
中并没有使用测量噪声方差,加权的依据来源于测量的准确性。假设测量噪声为高斯白噪声Nk,其均值和协方差分别为ENk0ENkNkTRk,若每次测量噪声不相关,则Rk为对角阵,即RkR1R2⋱Rk1式中,R1R2⋯Rk是测量噪声在12⋯k时刻的方差。设权值用W表示,可取WRk−1。这样做的原因在于当数据测量方差大时,其权重应设置小些。
2024-08-17 23:15:16
1012
原创 最小二乘估计(1)
最小二乘估计方法是一种利用观测数据估计线性模型中未知参数的方法,其基本思路是,。在介绍最小二乘方法之前先明确一个现象,即传感器的测量数据和实际的真实值通常不是完全一致的。测量时,由于各种因素的影响,会对测量造成误差,导致物理量的测量数据和真实值不一样,这就是通常所说的“测得不准”。
2024-08-17 21:11:56
1421
原创 基于机理状态模型的约束预测控制
1、约束优化问题描述考虑如下线性离散时间系统的状态空间增量模型:Δx(k+1)=AΔx(k)+BuΔu(k)+BdΔd(k)yc(k)=CcΔx(k)+yc(k−1)yb(k)=CbΔx(k)+yb(k−1)(1)\begin{aligned}\Delta x(k+1)&=A\Delta x(k)+B_u\Delta u(k) +B_d\Delta d(k)\\[1ex]y_c(k)&=C_c\Delta x(k) + y_c(k-1)\\[1ex]y_b(k)&=C_b
2024-06-24 16:54:01
486
原创 无约束动态矩阵控制(DMC)
动态矩阵控制(Dynamic Matrix Control,DMC)是一种典型的模型预测控制方法,其不需要被控对象的数学模型,只需要获取被控对象的阶跃响应序列即可实现控制效果,但其需要被控对象是渐近稳定的。
2024-06-20 15:51:16
1271
原创 二次规划(Lagrange 方法,起作用集方法)
二次规划是非线性规划中一种特殊情形,它的。由于二次规划比较简单,便于求解,且一些非线性规划可以转化为求解一系列二次规划问题,因此二次规划算法较早引起人们的重视,成为求解非线性规划的一个重要通径。二次规划的算法较多,本章介绍其中几个典型的方法,它们是和。
2024-06-19 17:47:39
1865
原创 基于状态空间模型的无约束预测控制
xk1AxkBuukBddkyckCcxk1其中xk∈Rnx是状态变量;uk∈Rnu是控制输入变量;yck∈Rnc是被控输出变量;dk∈Rnd是可以测量的外部干扰变量。上面的离散时间模型与连续时间模型x˙AcxtBcuutBcddtyctCcxt2ABuBdeAc。
2024-06-02 14:17:53
928
原创 多输入多输出非线性对象的模型预测控制—Matlab实现
本示例展示了如何在 Simulink 中设计多输入多输出对象的闭环模型预测控制。该对象有三个操纵变量和两个测量输出。
2024-05-30 16:04:09
1217
1
原创 TCS工作原理
由于逻辑门限值方法具有很强的控制收敛特性以及算法简单易操作的特点,因此该方法在工程领域得到了广泛的应用。其基本原理是采用驱动轮的加速度和滑转率作为控制门限,控制逻辑要考虑到所有可能遇到的工况,当加速度或者滑转率超过设定的门限时才进行TCS干预,最终能使车轮的滑转率在最优滑转率附近波动,以获得最大的车轮纵向力和侧向力。该方法虽然不需建立精确的数学模型,但是控制逻辑设计非常复杂,并且需要进行大量的匹配试验来调整出一组最优的门限值,开发周期一般较长。上述控制方法都有其特点。
2024-05-28 09:53:16
1945
原创 驱动防滑控制方法——最大传递扭矩控制
也就是说,车辆一旦发生打滑,电机的过度驱动非但不能使车辆继续加速,反而会使得车辆打滑情况加剧。当汽车即将或己经滑转时,车轮加速度的绝对值会大于底盘加速度,这将会导致轮速与底盘速度之间的差距越来越大,即滑转率会越来越大,车辆也就更加不稳定,易引发安全事故。已知,且车身加速度一定的时候,为防止车辆打滑,这时车轮角加速度必须限制在一定范围内,即。为简化问题,定义车身加速度与车轮加速度松弛因子,定义为底盘加速度与车轮加速度之比,假定某时刻,保证在某一路面行驶的汽车不打滑的最大驱动力矩为。,根据式(1)可得到。
2024-05-28 08:45:10
1430
原创 二自由度悬架建模Simulink
参考文献]:刘善辉.半主动悬架的智能优化滑模控制研究[D].吉林大学。二自由度半主动悬架模型的基本结构如下图所示,图中。代表非簧载质量(包括车轮以及制动、转向系统),代表簧载质量(主要包括车身以及底盘),代表半主动悬架阻尼力。代表非簧载质量位移,
2024-05-06 14:52:32
1532
原创 路面输入建模Simulink
通常把路面相对于基准平面高度沿道路走向长度的变化称为路面不平度。关于路面不平度模型最常用的方法为滤波白噪声法,该方法计算简单、意义明确、易于建模实现。GqnGqn0n0n−w其中,n为路面空间频率,单位为m−1;n0为参考空间频率n00.1m−1;Gqn0为路面不平度系数,用来表征不同路面等级,单位是m3;w为频率指数,这里取值为 2。标准根据Gqn0。
2024-05-06 10:42:03
2814
原创 Matlab 输出文本和数组
formatSpec 输入中的 %4.2f 指定输出中每行的第一个值为浮点数,字段宽度为四位数,包括小数点后的两位数。formatSpec 输入中的 %8.3f 指定输出中每行的第二个值为浮点数,字段宽度为八位数,包括小数点后的三位数。\n 为新起一行的控制字符。
2024-04-08 08:34:06
903
原创 创建自定义 Simulink 环境
该环境对象作为一个接口,当您调用 sim 或 train 时,这些函数会反过来调用与该对象相关联的(已编译的)Simulink 模型,为代理生成经验。一般情况下,在 RL Agent 模块和环境模块之间的动作信号上添加延迟(Simulink)或内存(Simulink)块可消除代数循环。或者,也可以在环境模块之后的所有环境输出信号中添加延迟或内存块。您的环境模型必须有一个输入信号,即影响(通过某些离散、连续或混合动态)其下一内部状态的动作,以及其输出,即状态观测、奖励和完成信号。的奖励信号必须是时间。
2024-03-08 14:46:17
1350
原创 在自定义环境中定义奖励和状态观测信号
连续奖励函数会随着环境状态观测和动作的变化而不断变化。一般来说,连续奖励信号能提高训练过程中的收敛性,并能简化网络结构。二次调节器 (QR) 成本函数就是连续奖励的一个例子,其长期累积奖励可表示为Ji−sτTQτsτji∑τsjTQjsjajTRjaj2sjTNjaj其中,QτQR和N是权重矩阵。Qτ是终端权重矩阵,仅在回合结束时使用,s是状态观测向量,
2024-03-08 13:44:35
1111
原创 强化学习(五)蒙特卡罗方法
首先考虑给定策略的状态价值函数的蒙特卡罗方法。一个状态的价值就是从该状态开始的期望收益(期望的未来折扣奖励之和),因此一个显而易见的方法是,多次访问该状态后对观察到的收益进行平均,当访问次数足够多时,平均值会收敛于期望收益值(即该状态的价值),这就是所有蒙特卡罗方法的基础。假设给定一组遵循策略π并包含状态s的经验序列,我们希望估计该策略下状态s的价值vπs,每个序列中,状态s的出现称为对s的访问,一个序列s可能被多次访问。与。
2024-02-28 18:52:08
1190
原创 非有理 B 样条曲线插值方法——给定点数据的局部抛物线插值(可进行封闭曲线插值)
给定Qkk01⋯n,局部曲线插值是指创建nCiui01⋯n−1,要求相邻曲线段在连接点处满足事先指定的连续阶,采用多项式构造每个曲线段,然后选择一个合适的节点矢量得到 B 样条曲线。为了生成 B 样条曲线段Ciu,需要计算内控制点:二次的有一个;三次的有两个。这些控制点都在与曲线相切于Qk点的直线上,因此我们需要知道每一个Qk处的切向矢量Tk。
2024-02-27 09:39:33
913
2
原创 非有理 B 样条曲线插值方法——给定点数据的全局曲线插值(参数化插值方法)
ppp次 B 样条曲线的定义为Cu∑i0nNipuPia≤u≤b(1)Cui0∑nNipuPia≤u≤b1这里Pi\pmb P_iPi是曲线的控制点NipuNipu)}是定义在非周期(并且非均匀)节点矢量Ua⋯a⏟p1up1⋯um−p−1b⋯b⏟p1Up1a⋯aup1⋯um−p−1p。
2024-02-23 15:03:03
1772
4
原创 B 样条曲线
p次 B 样条曲线的定义为Cui0∑nNipuPia≤u≤b1这里Pi是曲线的Nipu)}是定义在非周期(并且非均匀)节点矢量Up1a⋯aup1⋯um−p−1p1b⋯b(包含m1个节点)上的p次 B 样条基函数。除非特别声明,通常取a0b1。由Pi构成的多边形称为。对于固定的uuU00012344555u25。
2024-02-19 15:18:14
1416
原创 B 样条曲线拟合算法
一条p次 B 样条曲线的定义为Cui0∑nNipuPia≤u≤b1其中Pi是曲线的Nipu是定义在非周期节点矢量U上的p次 B 样条基函数,其值按照下式求取。
2024-02-19 08:38:34
3429
1
原创 B 样条基函数
令Uu0u1⋯um是一个单调不减的实数序列,即ui≤ui1i01⋯m−1。其中,ui称为节点,U称为节点矢量,用Nipu表示第i个p次(p1阶)B 样条基函数,其定义为(也称为Ni0uNipu10ui≤uui1elseuip−uiu−uiNip−1uuip1−ui1ui。
2024-02-18 18:30:59
3389
1
原创 贝塞尔曲线
由(3)式,一次和二次 Bernstein 多项式是。固定时计算 Bernstein 多项式值的算法。次 Bernstein 多项式,其定义为。时,由(1)式和(2)式可得。其中,基函数(也称为混合函数),由(4)式可以得到计算。次贝塞尔曲线可以表示为。综合利用式(1)和算法。可以计算对某个固定的。由式(3)可以得到当。次贝塞尔曲线上的点。次贝塞尔曲线,我们有。
2024-02-18 15:06:48
978
原创 移动最小二乘法
(Moving Least Square,MLS)主要应用于,该方法基于(即函数值只在有限大小的封闭域中定义大于零,而在域外则定义为零)和,通过建立适合散点(Scattered points)模型的拟合函数。
2024-02-09 22:10:52
3023
1
原创 ManimCE教程(3)Manim 基本构成要素
即使 Manim 有许多内置动画,您也会发现有时需要从Moject的一种状态平滑地到另一种状态,因此需要自定义动画。首先扩展Animation类并覆盖其。方法接收 alpha 作为一个参数,该参数从0开始,并在整个动画中更改。因此,您只需要根据其方法中的 alpha 值在Animation内部操纵。然后,您可以获得动画的所有好处,例如在不同的运行时间播放动画或使用不同的速率函数。假设您从一个数字开始,并希望创建一个将其变换为目标数字的Transform动画。您可以使用来执行此操作。
2024-02-06 14:08:54
1562
原创 ManimCE教程(2)Manim 输出设置
上节,我们执行了以下命令剖析代码执行过程:首先,此命令在文件上执行 manim,该文件包含动画代码。此外,该命令告诉 manim 要渲染的场景,也就是。这是必要的,因为单个场景文件可能包含多个场景。接下来,命令 manim 渲染后播放,而命令 manim 以低质量渲染该场景。主要输出在中。默认情况下,将包含 manim 的所有输出文件,包含渲染的视频,在我们的例子中,由于我们使用了标志,视频是以每秒 15 帧的 480 分辨率从文件中生成的。因此,可以在中找到输出。
2024-02-05 16:22:54
1709
原创 4.2、傅里叶级数
设有周期信号ft,它的周期为T,角频率Ω2πFT2π,它可分解为ft2a0n1∑∞ancosnΩtn1∑∞bnsinnΩt其中anbnT2∫−2T2TftcosnΩtdtn012⋯T2∫−2T2TftsinnΩtdtn12⋯将同频率项合并,可写成如下形式ft2A0。
2024-01-31 17:03:43
853
原创 4.1 信号分解为正交函数
在t1t2区间两个函数φ1t和φ2t,满足∫t1t2φ1tφ2tdt0则称φ1t和φ2t在区间t1t2内正交。:例如向量vx1x2x3,其包含的信息为:第 1 维度的值为x1,第 2 维度的值为x2,第 3 维度的值为x3,若将维度看成自变量,值看成因变量,则向量就是一种特殊的函数,而函数则可以视为无穷维空间的一个向量。
2024-01-30 17:43:43
1180
原创 支持向量机(SVM)详解
支持向量机(support vector machines,SVM)是一种二分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机。1、线性可分支持向量机与硬间隔最大化1.1、线性可分支持向量机考虑一个二分类问题。假设输入空间与特征空间为两个不同的空间,这两个空间的元素一一对应,并将输入空间的输入映射为特征空间中的特征向量,支持向量机的学习是在特征空间进行的。假设一个特征空间上的训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_
2024-01-24 14:44:57
1891
原创 Matlab 将工作区变量保存到文件中(save)
创建两个变量 A 和 B,然后将它们保存到 7 或 7.3 版的 MAT 文件中。创建两个变量并将其保存到名为 myFile.mat 的 7 或 7.3 版的 MAT 文件中,而不进行压缩。创建两个变量并将其保存到名为 example.mat 的 7.3 版的 MAT 文件中。将结构体 s1 的字段保存为名为 newstruct.mat 的文件中的单个变量。创建两个变量 p 和 q 并将其保存到名为 pqfile.mat 的文件中。创建两个变量,将其保存到 ASCII 文件中,然后查看文件内容。
2024-01-22 09:50:45
9489
原创 强化学习(四)动态规划——1
动态规划算法(DP):在马尔可夫决策过程(MDP)的完美环境模型下计算最优策略。但其在强化学习中实用性有限,其一是它是基于环境模型已知;其二是它的计算成本很大。但它在理论伤仍然很重要,其他的一些算法与动态规划算法(DP)十分相似,只是计算量小及没有假设环境模型已知。动态规划算法(DP)和一般的强化学习算法的关键思想都是基于价值函数对策略的搜索,如前所述,一旦我们找到满足贝尔曼最优方程的最优价值函数v∗或q∗,我们就可以很容易地获得最优策略。
2024-01-21 23:21:01
1505
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人