作为 Python 开发人员,使用第三方库来完成您真正想要的工作是很方便的,而不是每次都重新发明轮子。在本教程中,您将熟悉psutil,它是Python 中用于进程和系统监控的跨平台库,以及用于在 Python 中提取系统和硬件信息的内置平台模块。
最后,我将向您展示如何打印 GPU 信息(当然,如果您有的话)。
这是本教程的目录:
相关: 如何使用 ipaddress 模块在 Python 中操作 IP 地址。
在我们深入研究之前,您需要安装 psutil:
pip3 install psutil
打开一个新的 python 文件,让我们开始,导入必要的模块:
import psutil
import platform
from datetime import datetime
让我们创建一个函数,将大量字节转换为缩放格式(例如,以千、兆、千兆等为单位):
def get_size(bytes, suffix="B"):
"""
Scale bytes to its proper format
e.g:
1253656 => '1.20MB'
1253656678 => '1.17GB'
"""
factor = 1024
for unit in ["", "K", "M", "G", "T", "P"]:
if bytes < factor:
return f"{bytes:.2f}{unit}{suffix}"
bytes /= factor
系统信息
我们在这里需要平台模块:
print("="*40, "System Information", "="*40)
uname = platform.uname()
print(f"System: {uname.system}")
print(f"Node Name: {uname.node}")
print(f"Release: {uname.release}")
print(f"Version: {uname.version}")
print(f"Machine: {uname.machine}")
print(f"Processor: {uname.processor}")
获取计算机启动的日期和时间:
# Boot Time
print("="*40, "Boot Time", "="*40)
boot_time_timestamp = psutil.boot_time()
bt = datetime.fromtimestamp(boot_time_timestamp)
print(f"Boot Time: {bt.year}/{bt.month}/{bt.day} {bt.hour}:{bt.minute}:{bt.second}")
CPU信息
让我们获取一些 CPU 信息,例如总内核数、使用情况等:
# let's print CPU information
print("="*40, "CPU Info", "="*40)
# number of cores
print("Physical cores:", psutil.cpu_count(logical=False))
print("Total cores:", psutil.cpu_count(logical=True))
# CPU frequencies
cpufreq = psutil.cpu_freq()
print(f"Max Frequency: {cpufreq.max:.2f}Mhz")
print(f"Min Frequency: {cpufreq.min:.2f}Mhz")
print(f"Current Frequency: {cpufreq.current:.2f}Mhz")
# CPU usage
print("CPU Usage Per Core:")
for i, percentage in enumerate(psutil.cpu_percent(percpu=True, interval=1)):
print(f"Core {i}: {percentage}%")
print(f"Total CPU Usage: {psutil.cpu_percent()}%")
psutil的cpu_count()函数返回内核数,而cpu_freq()函数返回 CPU 频率,namedtuple
包括以 Mhz 表示的当前、最小和最大频率,您可以设置percpu=True
为获取每个 CPU 频率。
cpu_percent()方法返回一个浮点数,表示当前 CPU 利用率的百分比,设置interval
为 1(秒)将比较一秒前后经过的系统 CPU 时间,我们设置percpu
为True
以获取每个内核的 CPU 使用率。
内存使用情况
# Memory Information
print("="*40, "Memory Information", "="*40)
# get the memory details
svmem = psutil.virtual_memory()
print(f"Total: {get_size(svmem.total)}")
print(f"Available: {get_size(svmem.available)}")
print(f"Used: {get_size(svmem.used)}")
print(f"Percentage: {svmem.percent}%")
print("="*20, "SWAP", "="*20)
# get the swap memory details (if exists)
swap = psutil.swap_memory()
print(f"Total: {get_size(swap.total)}")
print(f"Free: {get_size(swap.free)}")
print(f"Used: {get_size(swap.used)}")
print(f"Percentage: {swap.percent}%")
virtual_memory()方法返回有关系统内存使用情况的统计信息namedtuple
,包括(可用total
物理内存总量)、available
(可用内存,即未使用)used
和percent
(即百分比)等字段。swap_memory()是相同的,但用于交换内存。
我们使用先前定义的get_size()函数以缩放方式打印值,因为这些统计信息以字节表示。
磁盘使用情况
# Disk Information
print("="*40, "Disk Information", "="*40)
print("Partitions and Usage:")
# get all disk partitions
partitions = psutil.disk_partitions()
for partition in partitions:
print(f"=== Device: {partition.device} ===")
print(f" Mountpoint: {partition.mountpoint}")
print(f" File system type: {partition.fstype}")
try:
partition_usage = psutil.disk_usage(partition.mountpoint)
except PermissionError:
# this can be catched due to the disk that
# isn't ready
continue
print(f" Total Size: {get_size(partition_usage.total)}")
print(f" Used: {get_size(partition_usage.used)}")
print(f" Free: {get_size(partition_usage.free)}")
print(f" Percentage: {partition_usage.percent}%")
# get IO statistics since boot
disk_io = psutil.disk_io_counters()
print(f"Total read: {get_size(disk_io.read_bytes)}")
print(f"Total write: {get_size(disk_io.write_bytes)}")
正如预期的那样,disk_usage()函数将磁盘使用统计信息返回为namedtuple
,包括total
,used
以及free
以字节表示的空间。
网络信息
# Network information
print("="*40, "Network Information", "="*40)
# get all network interfaces (virtual and physical)
if_addrs = psutil.net_if_addrs()
for interface_name, interface_addresses in if_addrs.items():
for address in interface_addresses:
print(f"=== Interface: {interface_name} ===")
if str(address.family) == 'AddressFamily.AF_INET':
print(f" IP Address: {address.address}")
print(f" Netmask: {address.netmask}")
print(f" Broadcast IP: {address.broadcast}")
elif str(address.family) == 'AddressFamily.AF_PACKET':
print(f" MAC Address: {address.address}")
print(f" Netmask: {address.netmask}")
print(f" Broadcast MAC: {address.broadcast}")
# get IO statistics since boot
net_io = psutil.net_io_counters()
print(f"Total Bytes Sent: {get_size(net_io.bytes_sent)}")
print(f"Total Bytes Received: {get_size(net_io.bytes_recv)}")
net_if_addrs()函数返回与系统上安装的每个网络接口卡相关联的地址。
好的,这是我个人 linux 机器的结果输出:
<span style="color:#212529"><span style="background-color:#ffffff"><span style="background-color:#f5f2f0"><span style="color:#000000"><code class="language-markup">======================================== System Information ========================================
System: Linux
Node Name: rockikz
Release: 4.17.0-kali1-amd64
Version: #1 SMP Debian 4.17.8-1kali1 (2018-07-24)
Machine: x86_64
Processor:
======================================== Boot Time ========================================
Boot Time: 2019/8/21 9:37:26
======================================== CPU Info ========================================
Physical cores: 4
Total cores: 4
Max Frequency: 3500.00Mhz
Min Frequency: 1600.00Mhz
Current Frequency: 1661.76Mhz
CPU Usage Per Core:
Core 0: 0.0%
Core 1: 0.0%
Core 2: 11.1%
Core 3: 0.0%
Total CPU Usage: 3.0%
======================================== Memory Information ========================================
Total: 3.82GB
Available: 2.98GB
Used: 564.29MB
Percentage: 21.9%
==================== SWAP ====================
Total: 0.00B
Free: 0.00B
Used: 0.00B
Percentage: 0%
======================================== Disk Information ========================================
Partitions and Usage:
=== Device: /dev/sda1 ===
Mountpoint: /
File system type: ext4
Total Size: 451.57GB
Used: 384.29GB
Free: 44.28GB
Percentage: 89.7%
Total read: 2.38GB
Total write: 2.45GB
======================================== Network Information ========================================
=== Interface: lo ===
IP Address: 127.0.0.1
Netmask: 255.0.0.0
Broadcast IP: None
=== Interface: lo ===
=== Interface: lo ===
MAC Address: 00:00:00:00:00:00
Netmask: None
Broadcast MAC: None
=== Interface: wlan0 ===
IP Address: 192.168.1.101
Netmask: 255.255.255.0
Broadcast IP: 192.168.1.255
=== Interface: wlan0 ===
=== Interface: wlan0 ===
MAC Address: 64:70:02:07:40:50
Netmask: None
Broadcast MAC: ff:ff:ff:ff:ff:ff
=== Interface: eth0 ===
MAC Address: d0:27:88:c6:06:47
Netmask: None
Broadcast MAC: ff:ff:ff:ff:ff:ff
Total Bytes Sent: 123.68MB
Total Bytes Received: 577.94MB</code></span></span></span></span>
如果您使用的是笔记本电脑,则可以使用 psutil.sensors_battery() 获取电池信息。
另外,如果你是一个Linux用户,你可以使用 psutil.sensors_fan() 来获得风扇的RPM(每分钟转数) ,也 psutil.sensors_temperatures() 来获得各种设备的温度。
图形处理器信息
psutil不向我们提供 GPU 信息。因此,我们需要安装GPUtil:
pip3 install gputil
GPUtil是一个 Python 模块,仅用于获取 NVIDIA GPU 的 GPU 状态,它定位计算机上的所有 GPU,确定它们的可用性并返回可用 GPU 的有序列表。它需要安装最新的 NVIDIA 驱动程序。
此外,我们需要安装tabulate 模块,这将允许我们以表格方式打印 GPU 信息:
pip3 install tabulate
以下代码行打印您机器中的所有 GPU 及其详细信息:
# GPU information
import GPUtil
from tabulate import tabulate
print("="*40, "GPU Details", "="*40)
gpus = GPUtil.getGPUs()
list_gpus = []
for gpu in gpus:
# get the GPU id
gpu_id = gpu.id
# name of GPU
gpu_name = gpu.name
# get % percentage of GPU usage of that GPU
gpu_load = f"{gpu.load*100}%"
# get free memory in MB format
gpu_free_memory = f"{gpu.memoryFree}MB"
# get used memory
gpu_used_memory = f"{gpu.memoryUsed}MB"
# get total memory
gpu_total_memory = f"{gpu.memoryTotal}MB"
# get GPU temperature in Celsius
gpu_temperature = f"{gpu.temperature} °C"
gpu_uuid = gpu.uuid
list_gpus.append((
gpu_id, gpu_name, gpu_load, gpu_free_memory, gpu_used_memory,
gpu_total_memory, gpu_temperature, gpu_uuid
))
print(tabulate(list_gpus, headers=("id", "name", "load", "free memory", "used memory", "total memory",
"temperature", "uuid")))
这是我机器中的输出:
======================================== GPU Details ========================================
id name load free memory used memory total memory temperature uuid
---- ---------------- ------ ------------- ------------- -------------- ------------- ----------------------------------------
0 GeForce GTX 1050 2.0% 3976.0MB 120.0MB 4096.0MB 52.0 °C GPU-c9b08d82-f1e2-40b6-fd20-543a4186d6ce
太好了,现在您可以将这些信息集成到您的 Python 监视器应用程序和实用程序中!
检查我们在本教程中使用的库的文档:
您还可以使用 psutil 来 监控操作系统进程,例如每个进程的 CPU 和内存使用情况等。