当前NVDIA Orin X是绝对主流的智驾芯片。
DLA是的NVDIA在OrinX退出的第二代深度学习加速器。
感知算法是深度学习的模块,所以需要通过DLA int8测试,并评估每一帧的算法耗时,以及算法的稳定性。
算法耗时评估
算法耗时评估是评估Lidar对每一帧点云的算法处理时长。单帧算法耗时过长,之后一帧的数据就会被丢弃(丢帧),所以算法耗时是极其重要的指标。主要指标:平均耗时&3σ最大耗时。
例如,感知端的输入帧率是10帧左右,当前的算法耗时需要与帧率匹配,平均耗时&3σ最大耗时至少要小于90ms(预留10ms buffer)。
稳定性评估
稳定性评估是通过评估感知结果的丢帧数量及比例来评估。
同时要评估内存泄漏的状态、RAM占用情况、CPU占用情况。
DLA
Deep Layer Aggregation,深度聚合
是一种对点云进行特征的提取和聚合的算法。
DLA有两种聚合方法:
-
IDA,Iterative deep Aggregation,迭代深度聚合;
-
逐级提炼分辨率和聚合的尺度
-
-
HDA,Hierarchical deep Aggregation,分层深度聚合
-
在空间尺度上,对不同级别的特征进行提取融合,形成各种模组和通道。
-