参考文献资料:
小蒟蒻yyb的博客
百度百科-伯努利数
伯努利数(Bernoulli)——学习笔记
康复计划#3 简单常用的几种计算自然数幂和的方法
Bernoulli number has been found for about 200 years.Its name is named after Bernoulli, its discoverer.
Recursive definition:
∑ k = 0 n ( n + 1 k ) B k = 0 \sum_{k=0}^n{n+1\choose k}B_k=0 k=0∑n(kn+1)Bk=0
Take out item n,we can get:
∑
k
=
0
n
−
1
(
n
+
1
k
)
B
k
+
(
n
+
1
n
)
B
n
=
0
\sum_{k=0}^{n-1}{n+1\choose k}B_k+{n+1\choose n}B_n=0
k=0∑n−1(kn+1)Bk+(nn+1)Bn=0
∑ k = 0 n − 1 ( n + 1 k ) B k + ( n + 1 ) B n = 0 \sum_{k=0}^{n-1}{n+1\choose k}B_k+(n+1)B_n=0 k=0∑n−1(kn+1)Bk+(n+1)Bn=0
B n = − 1 n + 1 ∑ k = 0 n − 1 ( n + 1 k ) B k B_n=-\frac{1}{n+1}\sum_{k=0}^{n-1}{n+1\choose k}B_k Bn=−n+11k=0∑n−1(kn+1)Bk
Generating Function Definition:
B ^ ( z ) = z e z − 1 \hat B(z)=\frac{z}{e^z-1} B^(z)=ez−1z
where
B
^
(
z
)
\hat B(z)
B^(z) is the generating function of
{
B
n
}
\{B_n\}
{Bn}:
B
^
(
z
)
=
∑
k
=
0
∞
B
k
z
k
k
!
\hat B(z)=\sum_{k=0}^{\infty}B_k\frac{z^k}{k!}
B^(z)=k=0∑∞Bkk!zk
The Sum of the k-th Powers:
We define :
S
t
(
n
)
=
∑
k
=
0
n
−
1
k
t
S_t(n)=\sum_{k=0}^{n-1}k^t
St(n)=k=0∑n−1kt
Be care about this:the generating function of
{
k
t
}
\{k^t\}
{kt} is
∑
t
=
0
∞
k
t
z
t
t
!
=
∑
t
=
0
∞
(
k
z
)
t
t
!
=
e
k
z
\sum_{t=0}^{\infty}k^t\frac{z^t}{t!}=\sum_{t=0}^{\infty}\frac{(kz)^t}{t!}=e^{kz}
t=0∑∞ktt!zt=t=0∑∞t!(kz)t=ekz
The result can be got by Taylor expansion.
Considering the Generation Function of
S
t
(
z
)
S_t(z)
St(z):
S
^
t
(
z
)
=
∑
p
=
0
∞
S
p
(
z
)
z
p
p
!
\hat S_t(z)=\sum_{p=0}^{\infty}S_p(z)\frac{z^p}{p!}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
S^t(z)=p=0∑∞Sp(z)p!zp
= ∑ p = 0 ∞ ( ∑ k = 0 n − 1 k p ) z p p ! =\sum_{p=0}^{\infty}\bigg(\sum_{k=0}^{n-1}k^p\bigg)\frac{z^p}{p!} =p=0∑∞(k=0∑n−1kp)p!zp
= ∑ k = 0 n − 1 ∑ p = 0 ∞ ( k z ) p p ! =\sum_{k=0}^{n-1}\sum_{p=0}^{\infty}\frac{(kz)^p}{p!}\ \ \ \ \ \ =k=0∑n−1p=0∑∞p!(kz)p
= ∑ k = 0 n − 1 e k z =\sum_{k=0}^{n-1}e^{kz}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =k=0∑n−1ekz
According to the summation formula of equal ratio series, we can get:
S
^
t
(
z
)
=
e
n
z
−
1
e
z
−
1
\hat S_t(z)=\frac{e^{nz}-1}{e^z-1}
S^t(z)=ez−1enz−1
Considering the definition of the generating function of Bernoulli number:
S
^
t
(
z
)
=
B
^
(
z
)
e
n
z
−
1
z
\hat S_t(z)=\hat B(z)\frac{e^{nz}-1}{z}
S^t(z)=B^(z)zenz−1
So we have:
S
t
(
n
)
=
1
t
+
1
∑
k
=
0
t
(
t
+
1
k
)
B
k
n
t
+
1
−
k
S_t(n)=\frac{1}{t+1}\sum_{k=0}^t{t+1\choose k}B_kn^{t+1-k}
St(n)=t+11k=0∑t(kt+1)Bknt+1−k
Where S t ( n ) S_t(n) St(n) is a t-th polynomial of n n n