伯努利数

参考文献资料:
小蒟蒻yyb的博客
百度百科-伯努利数
伯努利数(Bernoulli)——学习笔记
康复计划#3 简单常用的几种计算自然数幂和的方法
Bernoulli number has been found for about 200 years.Its name is named after Bernoulli, its discoverer.

Recursive definition:

∑ k = 0 n ( n + 1 k ) B k = 0 \sum_{k=0}^n{n+1\choose k}B_k=0 k=0n(kn+1)Bk=0

Take out item n,we can get:
∑ k = 0 n − 1 ( n + 1 k ) B k + ( n + 1 n ) B n = 0 \sum_{k=0}^{n-1}{n+1\choose k}B_k+{n+1\choose n}B_n=0 k=0n1(kn+1)Bk+(nn+1)Bn=0

∑ k = 0 n − 1 ( n + 1 k ) B k + ( n + 1 ) B n = 0 \sum_{k=0}^{n-1}{n+1\choose k}B_k+(n+1)B_n=0 k=0n1(kn+1)Bk+(n+1)Bn=0

B n = − 1 n + 1 ∑ k = 0 n − 1 ( n + 1 k ) B k B_n=-\frac{1}{n+1}\sum_{k=0}^{n-1}{n+1\choose k}B_k Bn=n+11k=0n1(kn+1)Bk

Generating Function Definition:

B ^ ( z ) = z e z − 1 \hat B(z)=\frac{z}{e^z-1} B^(z)=ez1z

where B ^ ( z ) \hat B(z) B^(z) is the generating function of { B n } \{B_n\} {Bn}:
B ^ ( z ) = ∑ k = 0 ∞ B k z k k ! \hat B(z)=\sum_{k=0}^{\infty}B_k\frac{z^k}{k!} B^(z)=k=0Bkk!zk

The Sum of the k-th Powers:

We define :
S t ( n ) = ∑ k = 0 n − 1 k t S_t(n)=\sum_{k=0}^{n-1}k^t St(n)=k=0n1kt

Be care about this:the generating function of { k t } \{k^t\} {kt} is
∑ t = 0 ∞ k t z t t ! = ∑ t = 0 ∞ ( k z ) t t ! = e k z \sum_{t=0}^{\infty}k^t\frac{z^t}{t!}=\sum_{t=0}^{\infty}\frac{(kz)^t}{t!}=e^{kz} t=0ktt!zt=t=0t!(kz)t=ekz

The result can be got by Taylor expansion.
Considering the Generation Function of S t ( z ) S_t(z) St(z):
S ^ t ( z ) = ∑ p = 0 ∞ S p ( z ) z p p !                  \hat S_t(z)=\sum_{p=0}^{\infty}S_p(z)\frac{z^p}{p!}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S^t(z)=p=0Sp(z)p!zp                

= ∑ p = 0 ∞ ( ∑ k = 0 n − 1 k p ) z p p ! =\sum_{p=0}^{\infty}\bigg(\sum_{k=0}^{n-1}k^p\bigg)\frac{z^p}{p!} =p=0(k=0n1kp)p!zp

= ∑ k = 0 n − 1 ∑ p = 0 ∞ ( k z ) p p !        =\sum_{k=0}^{n-1}\sum_{p=0}^{\infty}\frac{(kz)^p}{p!}\ \ \ \ \ \ =k=0n1p=0p!(kz)p      

= ∑ k = 0 n − 1 e k z                    =\sum_{k=0}^{n-1}e^{kz}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =k=0n1ekz                  

According to the summation formula of equal ratio series, we can get:
S ^ t ( z ) = e n z − 1 e z − 1 \hat S_t(z)=\frac{e^{nz}-1}{e^z-1} S^t(z)=ez1enz1

Considering the definition of the generating function of Bernoulli number:
S ^ t ( z ) = B ^ ( z ) e n z − 1 z \hat S_t(z)=\hat B(z)\frac{e^{nz}-1}{z} S^t(z)=B^(z)zenz1

So we have:
S t ( n ) = 1 t + 1 ∑ k = 0 t ( t + 1 k ) B k n t + 1 − k S_t(n)=\frac{1}{t+1}\sum_{k=0}^t{t+1\choose k}B_kn^{t+1-k} St(n)=t+11k=0t(kt+1)Bknt+1k

Where S t ( n ) S_t(n) St(n) is a t-th polynomial of n n n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值