在R语言中用 elbow 方法确定最佳聚类数

本文介绍了如何在R语言中使用elbow方法来确定k-means聚类的最佳类别数。通过k-means算法流程、伪代码解释以及代码演示,展示了如何找到聚类的肘部点,从而选择合适的类别数,例如在示例中确定的最佳类别数为9。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@在R语言中用 elbow 方法确定最佳聚类数

如何在R语言中用 elbow 方法确定最佳聚类数


在无监督学习中,我们有时候使用 k-means 方法进行聚类,对数据进行分析。k-means 很好用,但是确定最佳类别数是一个需要技术的活。如何科学地确定最佳类别数?下面介绍:使用elbow method确定 k-means的最佳类别数。

k-means 方法

k-means 算法流程

伪代码

用符号写出来就是符号形式的算法流程,叫做伪代码。

  • 算法描述
输入:数据集(每一行代表一个样本,没有label);类别数目 k
输出:数据集中每个样本对应的类别

1. 随机选择 k 个样本作为聚类中心;
2. 计算每个样本到 k 个聚类中心的距离,选择最近的聚类中心作为该样本的聚类中心;
3. 经过第2步之后,样本被分为 k 组,并且每组都有自己的聚类中心;重新计算每组的聚类中心;
4. 计算新的聚类中心与原来聚
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值