为什么需要化合物配比的优化?
在化合物制造行业中,化合物的配比是产品质量控制的关键环节。
化合物制造流程
目前,这一过程高度依赖于材料专家和工程技术人员的经验,通过反复试验来验证产品性能,确保其满足市场和客户的要求。然而,这种传统的试错方法存在着显著的局限性,包括周期长、成本高,无法保证每次都能找到最接近的配比方案。
如何利用AI方案进行优化?
利用AI技术通过机器学习和深度学习算法,分析历史数据来预测化合物在不同配比下的性能。
-
数据收集与分析:AI 技术首先收集大量的历史数据,包括化合物的性能数据和原材料特性数据,为后续的分析和预测提供基础。
-
建立预测模型:利用机器学习算法,AI 对数据进行预处理和特征提取,自动学习配比与化合物性能之间的关系,构建出预测模型。
-
优化与评估:在寻找新的配比方案时,AI 技术能迅速利用已建立的模型进行预测和评估,帮助科研人员快速定位到最佳配比,显著提高研发效率。
案例:高性能粘合剂配比优化
客户目前要生产一款高性能粘合剂,但其研发面临核心痛点:
-
配方开发的复杂性:传统试错法效率低下,难以同时满足化学稳定性、机械性能和热稳定性的高标准。大量实验不仅耗时,而且可能无法找到理想的配方。
-
实验的不确定性:即使条件相同,实验结果也可能因操作或环境差异而无法重现,这阻碍了有效的性能评估和决策。
-
严格的性能测试要求:汽车领域对粘合剂的性能有严苛标准。任何一项测试失败都可能导致配方调整,进而延长开发周期。
所以,他们需要找到一个粘合剂配方,能够使得热分解温度在350℃,拉伸强度在100MPA,质量损失在3%附近的高性能粘合剂。
为解决这些痛点,企业正转向利用AI技术,以期通过智能算法快速筛选和优化配方,提高研发效率,降低成本,并加速产品上市。
基于RapidMiner的高性能粘合剂配比优化方案
粘合剂制作过程:
特征提取:
数据清洗后,提取了以下特征数据
优化逻辑是,基于已有的的粘合剂的历史数据进行建模,可以通过DOE的方式生成新的配比数据,通过模型进行预测并进行优化。
在进行数据融合的时候,会存在不同的化合物使用的原材料和工艺是不同的。那么在做数据融合的时候,需要把当前没有添加的原材料和没有使用到的工艺设置为0。在特征处理时候需要注意几种情况:
-
部分工艺可能只在某一个粘合剂合成的时候出现,在出现的占比中非常少,这种属于正常情况,所以不需要把空值过多的列进行删除。
-
多目标优化的时候,需要根据目标的需要进行变量的衍生。例如:我需要热分解温度要在350℃,质量损失为3%,拉伸强度为100MPA,那么我就创建一个变量名为“Com”的变量,公式是:
([热分解温度]-350)^2+ ([拉伸强度]-100)^2+ ([质量损失])^2
我们在优化的时候只需要让当前的“Com”为0即可找到我们的最优粘合剂配比方案。
RapidMiner 中的 Process
总体流程以及步骤分解
总结:基于 Simulator 的优化
通过利用RapidMiner AI Studio的模拟功能,我们成功地进行了高性能粘合剂的模拟实验。经过对大量数据基于机器学习算法的优化迭代,我们找到了满足高性能粘合剂所有性能要求的最优配比方案。
若您对数据分析以及人工智能感兴趣,欢迎与我们一起站在全球视野关注人工智能的发展,与Forrester 、德勤、麦肯锡等全球知名企业共探AI如何加速制造进程,
共同参与6月20日由Altair主办的面向工程师的全球线上人工智能会议“AI for Engineers”。
点击立即免费报名
(注:现在注册参会,即可于会后第一时间获得Altair全球100个客户案例资料)
关于 Altair RapidMiner
Altair RapidMiner 数据分析与人工智能平台,是 Altair 澳汰尔公司旗下仿真、HPC 和数据分析三块主营业务中的解决方案,它在数据分析领域最早实现将自动化数据科学、文本分析、自动特征工程和深度学习等多种功能同时集成的一站式数据分析平台,帮助用户解决从数据清洗、准备、数据科学建模到模型管理和部署,同时又支持数据和流数据的实时分析可视化的数据分析平台。
欲了解更多信息,欢迎关注公众号:Altair RapidMiner