案例简介
整流罩是绝大多数摩托车的重要组成部分,旨在提高车辆的空气动力学性能和稳定性。Altair 与 KTM 公司员工组成的项目团队,针对摩托车整流罩空气动力学方面的学生项目,展开了密切合作。
项目任务主要是对摩托车整流罩设计进行比较,从而改善阻力和空气动力平衡。本文将介绍设计团队如何使用 Altair 解决方案(包括 Altair Virtual Wind Tunnel™ 和 Altair ultraFluidX™)来实现最佳的整流罩设计,确保空气动力阻力更低并提高驾驶员的安全性和操控性。
在一项为期六个月的三阶段研究中,Altair 学生大使和流体动力学专家 Matthias Leister 着手对摩托车设计中的整体空气动力学性能进行了改进。
“ Altair ultraFluidX 实现了快速、轻松的前处理,同时仍然能够提供高保真结果。
—— 慕尼黑工业大学
Matthias Leister
面临的挑战
虽然空气动力学在所有车辆的设计中都至关重要,但在设计竞速摩托车时也有着不容忽视的作用。为了改善空气动力学特性并提高摩托车的效率和整体性能,制造商通常依靠摩托车整流罩(即安装在摩托车上的各种形状和尺寸的轻质面板)来实现这一目标。
整流罩设计给制造商带来了诸多挑战,从材料选择与制造限制因素到人体工程学、再到驾驶员安全性和舒适度等方面不一而足。由于这些整流罩主要侧重于减少风阻和气动阻力以及提高气动性能,因此必须进行大量的测试。然而物理风洞测试成本高昂,而风洞仿真能够兼具虚拟仿真技术和虚拟样机的优势,其成本仅占物理测试的一小部分。
此项学生项目旨在为基于 KTM 1290 Super Duke 的街车添加经过优化的整流罩,他们需要合适的软件工具和专家支持来进行空气动力学研究,进而评估摩托车设计并预测最优版本的空气动力学表现。
除了可在现实世界中发挥作用并满足所有制造要求和预算指南/目标的空气动力学优化整流罩设计之外,此项目还需要提供一种对目标群体具有吸引力的整流罩设计。作为,KTM RACing GmbH 项目团队在拓扑优化和强度分析领域已使用 Altair 仿真解决方案,但对他们来说,关于空气动力学方面是一个全新的项目,于是他们向 Altair 寻求了空气动力学分析方面的支持。
Altair解决方案
想要实现仿真,需要先建立一个虚拟模型,也就是使用经过简化的摩托车几何形状,而不得出现任何间隙或螺钉。仿真模型越精细,计算所需的时间就越长,而且这种增长不是线性增长,而是呈指数增长。这意味着即使是一个很小的改进,也可能会对计算时间产生巨大的影响,因此工程师们必须要找出一种能够实现高效工作的模式。
通过减小计算流量的单元大小来反复地提高仿真分辨率,学生们确定了结果不再变化的点,例如阻力系数。要准备几何结构和模型设置,项目团队使用了功能强大的设计和仿真环境 Altair HyperWorks 平台中的 Altair® HyperWorks® CFD 和 Altair Virtual Wind Tunnel™ (VWT) 软件。对于仿真本身,Altair 使用瞬态 CFD 求解器 Altair ultraFluidX™,它是 Altair 基于格子波尔兹曼方法提出的一种超高速空气动力学仿真解决方案。
该研究共分三个阶段进行:
1)使用经过简化的几何形状比较两种整流罩设计的气动阻力。
在研究的第一阶段,团队必须在两个最初的摩托车设计之间做出决定,设计中会呈现挡风玻璃的长度、角度和形状、车把切口、侧缘和尾部几何形状的差异。为了找到具有最佳性能的设计,团队借助经过简化的几何形状,从而实现更快的前处理和后处理。
该团队想要找出这两款摩托车(V4 版本或 V5 版本)理论上哪一个效率更高;然后根据结果,找到具有低气动阻力的整流罩设计。通过使用不同晶格大小的收敛性研究,学生在 Altair Virtual Wind Tunnel 中开发出了准确高效的仿真设置,可在约 8 小时内获得高保真结果。
▲在 Altair Virtual Wind Tunnel 中快速设置风洞参数
仿真结果清楚地表明,V5 版本在阻力系数方面明显优于V4 版本。阻力方面的主要差异是由驾驶员肩部的低压区域和驾驶员背部良好的压力恢复特性所致。之所以出现这些差异是因为挡风玻璃较长,导致头盔上方的空气流动更佳,从而导致驾驶员后方的尾部气流更小,低压区域更弱。根据这些经过简化的几何形状得出的结果,选择 V5 版本以便对详细模型作进一步研究。
▲阻力方面的主要差异是由驾驶员肩部的低压区域和驾驶员背部良好的压力恢复特性所致
2)验证所选整流罩设计的详细几何版本的空气动力学性能
为了详细了解空气流动行为和空气动力学特征,对详细的几何进行了仿真。该团队还有针对性地研究了其他部件和细节(例如内部组件和通风口)周围的空气流动。
▲为了详细了解空气流动行为和空气动力学特征,对详细的几何进行了仿真。
3)利用扰流板改善空气动力平衡和下压力
在第三阶段,团队则侧重于使用扰流板组件(小翼)改善空气动力平衡,以获得更好的车辆动力学性能,以实现安全性和更好的操控性。
▲虽然整体阻力增加,但同时也降低了作用在驾驶员身上的阻力系数,而肩膀和足部受到的压力也有所减小。
具体来说,团队研究了前轴和后轴之间的下压力与路面的比率,改善升力分配以实现更好的空气动力平衡。由于时间紧迫,该研究仅限于其中一种小翼设置。通过使用小翼,前轴的升力减少了 20%,后轴的下压力增加了 13%。此外,由于小翼的空气动力效率,整体阻力增加了 6%。
▲尽管小翼体积最大,但它对空气动力学性能的影响最小
研究结果具体如下:
-
小翼产生的涡流在通风口出口处产生高压区域,形成升力并减少通过散热器的质量流量。小翼的重新定位可以扭转这种影响并改善通过通风口的气流并产生额外的下压力。
-
下压力的增加很大程度上是由小翼上的局部压力差所致,但由于涡核中的低压,翼尖涡也会使摩托车后部产生下压力。
-
诸如更小的迎角、更优化的定位以及利用小翼翼型轮廓等改进可以进一步改善空气动力学效率以及对摩托车升力的整体影响。
“ 空气动力学项目向我们展示了Altair ultraFluidX™ 如何轻松快速地实现前处理,同时为我们提供高保真结果。如果没有 Altair 提供的工具以及出色的支持,该项目将无法顺利实现。"
—— KTM Racing GmbH 的 Fabric. / Mech. / Prod. / 3D Print Motorsports 团队负责人
Christian Fernsebner
关键结果
▇ 快速、简单的前处理
Altair 提供的 ultraFluidX 解决方案易于使用,支持快速建模,可以在短短 8 小时内完成仿真分析。
▇ 高保真结果
Altair 解决方案能够提供高保真结果,获得准确的阻力和升力系数,并让人们对整流罩周围的空气流动行为有一个更为详细的了解。最终空气动力学流动的关键区域得到了确定并进行了改进。
若您对数据分析以及人工智能感兴趣,欢迎与我们一起站在全球视野关注人工智能的发展,与Forrester 、德勤、麦肯锡等全球知名企业共探AI如何加速工业变革,共享众多优秀行业案例,开启AI人工智能全球新视野!!
共同参与6月20日由Altair主办的面向工程师的全球线上人工智能会议“AI for Engineers”。
点击立即免费报名
(注:现在注册参会,即可于会后第一时间获得Altair全球100个客户案例资料)
关于 Altair RapidMiner
Altair RapidMiner 数据分析与人工智能平台,是 Altair 澳汰尔公司旗下仿真、HPC 和数据分析三块主营业务中的解决方案,它在数据分析领域最早实现将自动化数据科学、文本分析、自动特征工程和深度学习等多种功能同时集成的一站式数据分析平台,帮助用户解决从数据清洗、准备、数据科学建模到模型管理和部署,同时又支持数据和流数据的实时分析可视化的数据分析平台。
欲了解更多信息,欢迎关注公众号:Altair RapidMiner