Raising Modulo Numbers 快速幂取模

快速幂取模处理a^b过大时不溢出并且复杂度减小一些。

数论内容:

(a+b+c)%m=((a%m+b)%m+c)%m

b为奇数时 a^b mod c=a^(b+1) mod c

b为偶数时 a^b mod c=a^b mod c


#include <iostream>
using namespace std;
typedef long long ll;
ll mod(ll a,ll b,ll m)
{
    ll ret=1;
    while(b)
    {
        if(b%2==1) ret=ret*a%m;
        a=a*a%m;
        b/=2;
    }
    return ret;
}
int main()
{
    ll t,m,n,a,b;
    cin >> t;
    while(t--)
    {
        cin >> m >> n;
        ll ans =0;
        while(n--)
        {
            cin >> a >> b;
            ans=(ans+mod(a,b,m))%m;
        }
        cout << ans << endl;
    }
    return 0;
}

在函数中处理一下奇数的情况


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值