矩阵求导术(上)

 原文链接:https://zhuanlan.zhihu.com/p/24709748

矩阵求导的技术,在统计学、控制论、机器学习等领域有广泛的应用。鉴于我看过的一些资料或言之不详、或繁乱无绪,本文来做个科普,分作两篇,上篇讲标量对矩阵的求导术,下篇讲矩阵对矩阵的求导术。本文使用小写字母x表示标量,粗体小写字母\boldsymbol{x} 表示向量,大写字母X表示矩阵。

 

首先来琢磨一下定义,标量f对矩阵X的导数,定义为\frac{\partial f}{\partial X} = \left[\frac{\partial f }{\partial X_{ij}}\right],即f对X逐元素求导排成与X尺寸相同的矩阵。然而,这个定义在计算中并不好用,实用上的原因是在对较复杂的函数难以逐元素求导;哲理上的原因是逐元素求导破坏了整体性。试想,为何要将f看做矩阵X而不是各元素X_{ij}的函数呢?答案是用矩阵运算更整洁。所以在求导时不宜拆开矩阵,而是要找一个从整体出发的算法。为此,我们来回顾,一元微积分中的导数(标量对标量的导数)与微分有联系:df = f'(x)dx;多元微积分中的梯度(标量对向量的导数)也与微分有联系:df = \sum_{i} \frac{\partial f}{\partial x_i}dx_i = \frac{\partial f}{\partial \boldsymbol{x}}^T d\boldsymbol{x} ,这里第一个等号是全微分公式,第二个等号表达了梯度\frac{\partial f}{\partial \boldsymbol{x}}与微分的联系;受此启发,我们将矩阵导数与微分建立联系:df = \sum_{i,j} \frac{\partial f}{\partial X_{ij}}dX_{ij} = \text{tr}\left(\frac{\partial f}{\partial X}^T dX\right) ,这里tr代表迹(trace)是方阵对角线元素之和,满足性质:对尺寸相同的矩阵A,B,\text{tr}(A^TB) = \sum_{i,j}A_{ij}B_{ij},即\text{tr}(A^TB)是矩阵A,B的内积,因此上式与原定义相容。

 

然后来建立运算法则。回想遇到较复杂的一元函数如f = \log(2+\sin x)e^{\sqrt{x}},我们是如何求导的呢?通常不是从定义开始求极限,而是先建立了初等函数求导和四则运算、复合等法则,再来运用这些法则。故而,我们来创立常用的矩阵微分的运算法则:

  1. 加减法:d(X\pm Y) = dX \pm dY;矩阵乘法:d(XY) = dX Y + X dY ;转置:d(X^T) = (dX)^T;迹:d\text{tr}(X) = \text{tr}(dX)
  2. 逆:dX^{-1} = -X^{-1}dX X^{-1}。此式可在XX^{-1}=I两侧求微分来证明。
  3. 行列式:d|X| = \text{tr}(X^{\#}dX) ,其中X^{\#}表示X的伴随矩阵,在X可逆时又可以写作d|X|= |X|\text{tr}(X^{-1}dX)。此式可用Laplace展开来证明,详见张贤达《矩阵分析与应用》第279页。
  4. 逐元素乘法:d(X\odot Y) = dX\odot Y + X\odot dY\odot表示尺寸相同的矩阵X,Y逐元素相乘。
  5. 逐元素函数:d\sigma(X) = \sigma'(X)\odot dX \sigma(X) = \left[\sigma(X_{ij})\right]是逐元素运算的标量函数。

 <

  • 6
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值