数据结构与算法(六)赫夫曼树

在这里插入图片描述
在这里插入图片描述

赫夫曼树创建

在这里插入图片描述
在这里插入图片描述

package com.atguigu.huffmantree;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {

	public static void main(String[] args) {
		int arr[] = { 13, 7, 8, 3, 29, 6, 1 };
		Node root = createHuffmanTree(arr);
		
		//测试一把
		preOrder(root); //
		
	}
	
	//编写一个前序遍历的方法
	public static void preOrder(Node root) {
		if(root != null) {
			root.preOrder();
		}else{
			System.out.println("是空树,不能遍历~~");
		}
	}

	// 创建赫夫曼树的方法
	/**
	 * 
	 * @param arr 需要创建成哈夫曼树的数组
	 * @return 创建好后的赫夫曼树的root结点
	 */
	public static Node createHuffmanTree(int[] arr) {
		// 第一步为了操作方便
		// 1. 遍历 arr 数组
		// 2. 将arr的每个元素构成成一个Node
		// 3. 将Node 放入到ArrayList中
		List<Node> nodes = new ArrayList<Node>();
		for (int value : arr) {
			nodes.add(new Node(value));
		}
		
		//我们处理的过程是一个循环的过程
		
		
		while(nodes.size() > 1) {
		
			//排序 从小到大 
			Collections.sort(nodes);
			
			System.out.println("nodes =" + nodes);
			
			//取出根节点权值最小的两颗二叉树 
			//(1) 取出权值最小的结点(二叉树)
			Node leftNode = nodes.get(0);
			//(2) 取出权值第二小的结点(二叉树)
			Node rightNode = nodes.get(1);
			
			//(3)构建一颗新的二叉树
			Node parent = new Node(leftNode.value + rightNode.value);
			parent.left = leftNode;
			parent.right = rightNode;
			
			//(4)从ArrayList删除处理过的二叉树
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			//(5)将parent加入到nodes
			nodes.add(parent);
		}
		
		//返回哈夫曼树的root结点
		return nodes.get(0);
		
	}
}

// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
	int value; // 结点权值
	char c; //字符
	Node left; // 指向左子结点
	Node right; // 指向右子结点

	//写一个前序遍历
	public void preOrder() {
		System.out.println(this);
		if(this.left != null) {
			this.left.preOrder();
		}
		if(this.right != null) {
			this.right.preOrder();
		}
	}
	
	public Node(int value) {
		this.value = value;
	}

	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}

	@Override
	public int compareTo(Node o) {
		// TODO Auto-generated method stub
		// 表示从小到大排序
		return this.value - o.value;
	}

}

赫夫曼编码

定长编码
在这里插入图片描述
变长编码
在这里插入图片描述
赫夫曼编码
在这里插入图片描述
在这里插入图片描述
1.Node类

//创建Node ,待数据和权值
class Node implements Comparable<Node>  {
	Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32
	int weight; //权值, 表示字符出现的次数
	Node left;//
	Node right;
	public Node(Byte data, int weight) {
		
		this.data = data;
		this.weight = weight;
	}
	@Override
	public int compareTo(Node o) {
		// 从小到大排序
		return this.weight - o.weight;
	}
	
	public String toString() {
		return "Node [data = " + data + " weight=" + weight + "]";
	}
	
	//前序遍历
	public void preOrder() {
		System.out.println(this);
		if(this.left != null) {
			this.left.preOrder();
		}
		if(this.right != null) {
			this.right.preOrder();
		}
	}
}

2. 要编码字符串的byte[]数组——》List
list:包含每个字符及其对应的次数
d:1 y:1 u:1 j:2 v:2 o:2 l:4 k:4 e:4 i:5 a:5 :9

/**
	 * 
	 * @param bytes 接收字节数组
	 * @return 返回的就是 List 形式   [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],
	 */
	private static List<Node> getNodes(byte[] bytes) {
		
		//1创建一个ArrayList
		ArrayList<Node> nodes = new ArrayList<Node>();
		
		//遍历 bytes , 统计 每一个byte出现的次数->map[key,value]
		Map<Byte, Integer> counts = new HashMap<>();
		for (byte b : bytes) {
			Integer count = counts.get(b);
			if (count == null) { // Map还没有这个字符数据,第一次
				counts.put(b, 1);
			} else {
				counts.put(b, count + 1);
			}
		}
		
		//把每一个键值对转成一个Node 对象,并加入到nodes集合
		//遍历map
		for(Map.Entry<Byte, Integer> entry: counts.entrySet()) {
			nodes.add(new Node(entry.getKey(), entry.getValue()));
		}
		return nodes;
		
	}

3.创建赫夫曼树

/可以通过List 创建对应的赫夫曼树
	private static Node createHuffmanTree(List<Node> nodes) {
		
		while(nodes.size() > 1) {
			//排序, 从小到大
			Collections.sort(nodes);
			//取出第一颗最小的二叉树
			Node leftNode = nodes.get(0);
			//取出第二颗最小的二叉树
			Node rightNode = nodes.get(1);
			//创建一颗新的二叉树,它的根节点 没有data, 只有权值
			Node parent = new Node(null, leftNode.weight + rightNode.weight);
			parent.left = leftNode;
			parent.right = rightNode;
			
			//将已经处理的两颗二叉树从nodes删除
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			//将新的二叉树,加入到nodes
			nodes.add(parent);
			
		}
		//nodes 最后的结点,就是赫夫曼树的根结点
		return nodes.get(0);
		
	}

4.遍历树,找到每个字符对应的路径字符串

//生成赫夫曼树对应的赫夫曼编码
	//思路:
	//1. 将赫夫曼编码表存放在 Map<Byte,String> 形式
	//   生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
	static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>();
	//2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径
	static StringBuilder stringBuilder = new StringBuilder();
//为了调用方便,我们重载 getCodes
	private static Map<Byte, String> getCodes(Node root) {
		if(root == null) {
			return null;
		}
		//处理root的左子树
		getCodes(root.left, "0", stringBuilder);
		//处理root的右子树
		getCodes(root.right, "1", stringBuilder);
		return huffmanCodes;
	}
	
	/**
	 * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
	 * @param node  传入结点
	 * @param code  路径: 左子结点是 0, 右子结点 1
	 * @param stringBuilder 用于拼接路径
	 */
	private static void getCodes(Node node, String code, StringBuilder stringBuilder) {
		StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
		//将code 加入到 stringBuilder2
		stringBuilder2.append(code);
		if(node != null) { //如果node == null不处理
			//判断当前node 是叶子结点还是非叶子结点
			if(node.data == null) { //非叶子结点
				//递归处理
				//向左递归
				getCodes(node.left, "0", stringBuilder2);
				//向右递归
				getCodes(node.right, "1", stringBuilder2);
			} else { //说明是一个叶子结点
				//就表示找到某个叶子结点的最后
				huffmanCodes.put(node.data, stringBuilder2.toString());
			}
		}
	}

5.得到的路径字符串,先按照原先的要编码的内容排列为一整个字符串,再转为字符数组。

/编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]
	/**
	 * 
	 * @param bytes 这时原始的字符串对应的 byte[]
	 * @param huffmanCodes 生成的赫夫曼编码map
	 * @return 返回赫夫曼编码处理后的 byte[] 
	 * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes();
	 * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"
	 * => 对应的 byte[] huffmanCodeBytes  ,即 8位对应一个 byte,放入到 huffmanCodeBytes
	 * huffmanCodeBytes[0] =  10101000(补码) => byte  [推导  10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]
	 * huffmanCodeBytes[1] = -88
	 */
	private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {
		
		//1.利用 huffmanCodes 将  bytes 转成  赫夫曼编码对应的字符串
		StringBuilder stringBuilder = new StringBuilder();
		//遍历bytes 数组 
		for(byte b: bytes) {
			stringBuilder.append(huffmanCodes.get(b));
		}
		
		//System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString());
		
		//将 "1010100010111111110..." 转成 byte[]
		
		//统计返回  byte[] huffmanCodeBytes 长度
		//一句话 int len = (stringBuilder.length() + 7) / 8;
		int len;
		if(stringBuilder.length() % 8 == 0) {
			len = stringBuilder.length() / 8;
		} else {
			len = stringBuilder.length() / 8 + 1;
		}
		//创建 存储压缩后的 byte数组
		byte[] huffmanCodeBytes = new byte[len];
		int index = 0;//记录是第几个byte
		for (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8
				String strByte;
				if(i+8 > stringBuilder.length()) {//不够8位
					strByte = stringBuilder.substring(i);
				}else{
					strByte = stringBuilder.substring(i, i + 8);
				}	
				//将strByte 转成一个byte,放入到 huffmanCodeBytes
				huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2);
				index++;
		}
		return huffmanCodeBytes;
	}

6.封装方法及调用

//使用一个方法,将前面的方法封装起来,便于我们的调用.
	/**
	 * 
	 * @param bytes 原始的字符串对应的字节数组
	 * @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组)
	 */
	private static byte[] huffmanZip(byte[] bytes) {
		List<Node> nodes = getNodes(bytes);
		//根据 nodes 创建的赫夫曼树
		Node huffmanTreeRoot = createHuffmanTree(nodes);
		//对应的赫夫曼编码(根据 赫夫曼树)
		Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
		//根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组
		byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
		return huffmanCodeBytes;
	}
public static void main(String[] args) {
        String content = "i like like like java do you like a java";
        byte[] contentBytes = content.getBytes();
        byte[] bytes = huffmanZip(contentBytes);
        System.out.println(Arrays.toString(bytes));


    }

在这里插入图片描述
相同值时候排列顺序不一样

赫夫曼解码

1.编码得到的byte数组----字符串
以下代码在考虑byte数组的最后一个数时,由于其长度不一定为8,所以不和256或,但是没有考虑补齐最后一个数前面的0(001)–1,或者长度刚好为8时候的负数的情况。


	/**
	 * 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码
	 * @param b 传入的 byte
	 * @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位
	 * @return 是该b 对应的二进制的字符串,(注意是按补码返回)
	 */
	private static String byteToBitString(boolean flag, byte b) {
		//使用变量保存 b
		int temp = b; //将 b 转成 int
		//如果是正数我们还存在补高位
		if(flag) {
			temp |= 256; //按位与 256  1 0000 0000  | 0000 0001 => 1 0000 0001
		}
		String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码
		if(flag) {
			return str.substring(str.length() - 8);
		} else {
			return str;
		}
	}

2.字符串与赫夫曼相对应,得到原先字符

//完成数据的解压
	//思路
	//1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]
	//   重写先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..."
	//2.  赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码  =》 "i like like like java do you like a java"
	
	
	//编写一个方法,完成对压缩数据的解码
	/**
	 * 
	 * @param huffmanCodes 赫夫曼编码表 map
	 * @param huffmanBytes 赫夫曼编码得到的字节数组
	 * @return 就是原来的字符串对应的数组
	 */
	private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) {
		
		//1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111...
		StringBuilder stringBuilder = new StringBuilder();
		//将byte数组转成二进制的字符串
		for(int i = 0; i < huffmanBytes.length; i++) {
			byte b = huffmanBytes[i];
			//判断是不是最后一个字节
			boolean flag = (i == huffmanBytes.length - 1);
			stringBuilder.append(byteToBitString(!flag, b));
		}
		//把字符串安装指定的赫夫曼编码进行解码
		//把赫夫曼编码表进行调换,因为反向查询 a->100 100->a
		Map<String, Byte>  map = new HashMap<String,Byte>();
		for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) {
			map.put(entry.getValue(), entry.getKey());
		}
		
		//创建要给集合,存放byte
		List<Byte> list = new ArrayList<>();
		//i 可以理解成就是索引,扫描 stringBuilder 
		for(int  i = 0; i < stringBuilder.length(); ) {
			int count = 1; // 小的计数器
			boolean flag = true;
			Byte b = null;
			
			while(flag) {
				//1010100010111...
				//递增的取出 key 1 
				String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符
				b = map.get(key);
				if(b == null) {//说明没有匹配到
					count++;
				}else {
					//匹配到
					flag = false;
				}
			}
			list.add(b);
			i += count;//i 直接移动到 count	
		}
		//当for循环结束后,我们list中就存放了所有的字符  "i like like like java do you like a java"
		//把list 中的数据放入到byte[] 并返回
		byte b[] = new byte[list.size()];
		for(int i = 0;i < b.length; i++) {
			b[i] = list.get(i);
		}
		return b;
		
	}
public static void main(String[] args) {
        String content = "i like like like java do you like a java";
		byte[] contentBytes = content.getBytes();
		System.out.println(contentBytes.length); //40
		
		byte[] huffmanCodesBytes= huffmanZip(contentBytes);
		System.out.println("压缩后的结果是:" + Arrays.toString(huffmanCodesBytes) + " 长度= " + huffmanCodesBytes.length);
		
		
		//测试一把byteToBitString方法
		//System.out.println(byteToBitString((byte)1));
		byte[] sourceBytes = decode(huffmanCodes, huffmanCodesBytes);
		
		System.out.println("原来的字符串=" + new String(sourceBytes)); // "i like like like java do you like a java"


    }

文件压缩

//编写方法,将一个文件进行压缩
	/**
	 * 
	 * @param srcFile 你传入的希望压缩的文件的全路径
	 * @param dstFile 我们压缩后将压缩文件放到哪个目录
	 */
	public static void zipFile(String srcFile, String dstFile) {
		
		//创建输出流
		OutputStream os = null;
		ObjectOutputStream oos = null;
		//创建文件的输入流
		FileInputStream is = null;
		try {
			//创建文件的输入流
			is = new FileInputStream(srcFile);
			//创建一个和源文件大小一样的byte[]
			byte[] b = new byte[is.available()];
			//读取文件
			is.read(b);
			//直接对源文件压缩
			byte[] huffmanBytes = huffmanZip(b);
			//创建文件的输出流, 存放压缩文件
			os = new FileOutputStream(dstFile);
			//创建一个和文件输出流关联的ObjectOutputStream
			oos = new ObjectOutputStream(os);
			//把 赫夫曼编码后的字节数组写入压缩文件
			oos.writeObject(huffmanBytes); //我们是把
			//这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用
			//注意一定要把赫夫曼编码 写入压缩文件
			oos.writeObject(huffmanCodes);
			
			
		}catch (Exception e) {
			// TODO: handle exception
			System.out.println(e.getMessage());
		}finally {
			try {
				is.close();
				oos.close();
				os.close();
			}catch (Exception e) {
				// TODO: handle exception
				System.out.println(e.getMessage());
			}
		}
		
	}

文件解压

//编写一个方法,完成对压缩文件的解压
	/**
	 * 
	 * @param zipFile 准备解压的文件
	 * @param dstFile 将文件解压到哪个路径
	 */
	public static void unZipFile(String zipFile, String dstFile) {
		
		//定义文件输入流
		InputStream is = null;
		//定义一个对象输入流
		ObjectInputStream ois = null;
		//定义文件的输出流
		OutputStream os = null;
		try {
			//创建文件输入流
			is = new FileInputStream(zipFile);
			//创建一个和  is关联的对象输入流
			ois = new ObjectInputStream(is);
			//读取byte数组  huffmanBytes
			byte[] huffmanBytes = (byte[])ois.readObject();
			//读取赫夫曼编码表
			Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject();
			
			//解码
			byte[] bytes = decode(huffmanCodes, huffmanBytes);
			//将bytes 数组写入到目标文件
			os = new FileOutputStream(dstFile);
			//写数据到 dstFile 文件
			os.write(bytes);
		} catch (Exception e) {
			// TODO: handle exception
			System.out.println(e.getMessage());
		} finally {
			
			try {
				os.close();
				ois.close();
				is.close();
			} catch (Exception e2) {
				// TODO: handle exception
				System.out.println(e2.getMessage());
			}
			
		}
	}
	
public static void main(String[] args) {
		
		//测试压缩文件
//		String srcFile = "d://Uninstall.xml";
//		String dstFile = "d://Uninstall.zip";
//		
//		zipFile(srcFile, dstFile);
//		System.out.println("压缩文件ok~~");
		
		
		//测试解压文件
		String zipFile = "d://Uninstall.zip";
		String dstFile = "d://Uninstall2.xml";
		unZipFile(zipFile, dstFile);
		System.out.println("解压成功!");
}

在这里插入图片描述

1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构算法支撑。2.网上数据结构算法的课程不少,但存在两个问题:1)授课方式单一,大多是照着代码念一遍,数据结构算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了2)说是讲数据结构算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 4)系统全面的讲解了数据结构算法, 除常用数据结构算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构算法。教程内容:本教程是使用Java来讲解数据结构算法,考虑到数据结构算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉、二叉与数组转换、二叉排序(BST)、AVL、线索二叉赫夫曼赫夫曼编码、多路查找(BB+和B*)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。学习目标:通过学习,学员能掌握主流数据结构算法的实现机制,开阔编程思路,提高优化程序的能力。
做一门精致,全面详细的 java数据结构算法!!! 让天下没有难学的数据结构, 让天下没有难学的算法, 不吹不黑,我们的讲师及其敬业,可以看到课程视频,课件,代码的录制撰写,都是在深夜,如此用心,其心可鉴,他不掉头发,谁掉头发??? 总之你知道的,不知道的,我们都讲,并且持续更新,走过路过,不要错过,不敢说是史上最全的课程,怕违反广告法,总而言之,言而总之,这门课你值得拥有,好吃不贵,对于你知识的渴求,我们管够管饱 话不多说,牛不多吹,我们要讲的本门课程内容: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉、二叉与数组转换、二叉排序(BST)、AVL、线索二叉赫夫曼赫夫曼编码、多路查找(BB+和B*)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法
内容简介: 无论你是从事业务开发,还是从事架构设计,想要优化设计模式,数据结构算法是必备的一门学科,本课程使用Java来讲解数据结构算法, 考虑到数据结构算法较难,授课采用图解加算法游戏的方式。 内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、 递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、 排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉、二叉与数组转换、二叉排序(BST)、AVL、线索二叉赫夫曼赫夫曼编码、 多路查找(BB+和B*)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、 克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。 为什么学数据结构算法算法是一个程序员真正的核心竞争力。无论用哪种语言做开发,算法从程序角度而言都是灵魂内核般的存在。 程序的躯体可以各式各样,但是内核一定要追求高效整洁。 同时掌握了算法,大厂名企的Offer不再是梦寐以求的梦想,而让程序高效且健壮,也不再是难以完成的技术难题。 所以无论是为提升自我内功修炼,还是提升程序灵魂内核健全,学习算法,都是现有可供选项里的最优解。 课程大纲: 为了让大家快速系统了解数据结构算法知识全貌,我为你总结了「数据结构算法框架图」,帮你梳理学习重点,建议收藏!! CSDN学院Java答疑群:
本教程为授权出品 课程介绍: 1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构算法支撑。 2.网上数据结构算法的课程不少,但存在两个问题: 1)授课方式单一,大多是照着代码念一遍,数据结构算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了 2)说是讲数据结构算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级  3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解  4)系统全面的讲解了数据结构算法, 除常用数据结构算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴 3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构算法。 教程内容: 本教程是使用Java来讲解数据结构算法,考虑到数据结构算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉、二叉与数组转换、二叉排序(BST)、AVL、线索二叉赫夫曼赫夫曼编码、多路查找(BB+和B*)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。 学习目标: 通过学习,学员能掌握主流数据结构算法的实现机制,开阔编程思路,提高优化程序的能力。
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页