MATLAB使用GPU加速计算

本文探讨了在MATLAB中利用GPU加速特征值运算eig()函数的方法及效果。通过对比不同精度设置下CPU与GPU的计算时间,验证了GPU在进行大规模矩阵计算时的显著加速作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上结论

1、对于特征值运算eig()函数来说,GPU的加速效果是很明显的
2、如果要求精度不高,采用单精度计算,加速效果更加明显

首先查看自己的电脑是不是支持GPU计算

在matlab的终端中输入:

gpuDevice()

我的电脑的GPU信息
可以看出我电脑的显卡为NVIDIA GeForce GTX 1050 Ti,且SupportsDouble值为1,表明其支持双精度计算。

clc
clear
close all
A = rand(3000,3000);
B = gpuArray(single(A));
tic
[v1,d1] = eig(B);
toc

对于上述简单的代码,如过使用CPU,即eig(A)的形式,对于3000*3000的矩阵,需要花费15秒的时间,采用双精度GPU之后,时间降为11秒,采用单精度计算后,时间仅为4秒。对于更大型的矩阵,加速效果会更加明显。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值